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Glossary

Deep neurals networks (DNN): ML models with
multiple hidden layers, each learning an informative
representation of the data, such as DNA regulatory
grammar.
DNA structural properties: physicochemical and
conformational numerical variables computed from
the nucleotide sequence, such as DNA shape.
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Engineered features: new variables derived from
the initial explanatory variables with the goal of
improving model accuracy.
Explanatory variables: a set of input features
based on which the ML model predicts the value of
the target variable.
Machine learning (ML): a set of algorithms that
automatically build models from training data.
Shallow ML: classical ML algorithms that produce
models with few hidden layers and that do not
automatically learn informative data representations,
instead relying on the modeler to provide engineered
features.
Target variable: the variable or set of variables
whose values the ML model learns to predict to a
certain degree of accuracy.
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Advanced machine learning (ML)
algorithms produce highly accu-
rate models of gene expression,
uncovering novel regulatory fea-
tures in nucleotide sequences in-
volving multiple cis-regulatory
regions across whole genes and
structural properties. These broaden
our understanding of gene regula-
tion and point to new principles to
test and adopt in the field of plant
science.
Innovations in gene expression
prediction
Deciphering the properties of gene ex-
pression, the process that includes tran-
scription, mRNA stability and translation,
will have an important impact on under-
standing plant physiology and improving
crop productivity [1,2]. To this end, ad-
vances in data-driven ML (see Glossary)
algorithms, such as deep neural net-
works (DNNs), have enabled significant
improvements in predicting gene expres-
sion patterns across a number of model
organisms [2,3] (Box 1). By further examin-
ing the 'learned' internal structure of these
models, we can decipher gene regulatory
features that the models infer from the
data to make such accurate predictions
[2,4,5] (Figure 1). The aim of the present
article is to give an overview of recent ML
developments and uncovered regulatory
principles, indicating how they can impact
future research in the field of plant science.
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Gene regulatory structure jointly
controls expression patterns
The regulation of gene expression is tradi-
tionally considered to be mainly driven by
the promoter, a ~100–3000 bp region im-
mediately upstream of the transcription
start site that carries multiple protein-bind-
ing sites for transcription factors (TFs) and
other RNA polymerase-related proteins
regulating transcription initiation (Figure
1A). However, using DNNs, studies have
shown that the whole DNA sequence at
and around the gene is highly predictive
of expression levels [2,6–8]. According to
genome-scale models, ~2 kb of this DNA
already contains the majority of informa-
tion on average mRNA abundance across
multiple conditions or tissues, explaining
over 82% of their variation and revealing
expression-related effects of sequence
motifs and their associations [2]. In higher
eukaryotes, improved performance is
achieved by models with inputs of up to
100 kb, spanning distant enhancer–pro-
moter interactions [9].

This contributes to the awareness that
gene expression regulation spans different
coding and noncoding regions that in-
clude the enhancer, promoter, untrans-
lated regions (UTRs), and terminator [2,8]
(Figure 1A). It is affected by the enzymatic
accessibility of DNA defined by chromatin
and epigenetic states [3,10]. Since
mRNA abundance is a result of both
mRNA synthesis and degradation, it is
controlled not only by TFs and core pro-
moters, but by a more complex set of
cis-acting elements carried mostly by
UTRs [11]. Whereas promoter regions
were found to explain up to 96% of the
variation of gene expression according to
DNNs, coding regions can explain up to
69% and 5′ and 3′ UTRs as much as
89% [10]. The different regions also carry
complementary information, with different
parts coevolving and predictive of the ac-
tivity of others [2]. A key characteristic of
the gene regulatory structure seems to
be that the initiating regions, namely the
. 12
promoter and 5′ UTR, define large-scale
expression properties (turning it on/off)
and can overshadow the contributions of
downstream terminating regions (3′ UTR
and terminator) involved in smaller-scale
changes of mRNA abundance, which are
harder to capture in models [8].

Including the information from the whole
gene regulatory structure as explanatory
variables in DNNs (Box 1) was shown to
improve predictive performance both in
plants (Arabidopsis) [2,8] as well as other
organisms from lower to higher eukary-
otes [2,7]. Moreover, experimentally vary-
ing certain regions (e.g., terminator) while
keeping others intact (e.g., promoter)
was found to have a large effect on gene
expression, with perturbations of up to
two orders of its magnitude [2]. Most pre-
diction and design approaches, however,
still focus on a single regulatory region
(most frequently the promoter or a part of
it), tested only with a specific reporter
gene and not optimized for genome-wide
application [1,6]. Regulator design could
thus be greatly improved by taking the
whole gene regulatory structure into
account.
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Box 1. Data-driven machine learning (ML) for deciphering gene regulatory principles

ML algorithms use training data to automatically build predictive models, which can be examined to interpret
new regulatory principles (see Figure 1 in main text). Continuing the success of classical, shallow ML architec-
tures, deep neural networks (DNNs) have brought improvements to the prediction of transcription factor bind-
ing sites [4] and gene expression patterns [2,3], such as those obtained via high-throughput sequencing,
including ChIP-seq, DAP-seq, RNA-seq, and ATAC-seq [4]. This is due to their ability to extract information
directly from raw input nucleotide sequence instead of relying on engineered features as with ML, where
the sequence is encoded with numerical variables [10]. Since DNNs automatically learn predictive motif repre-
sentations [4], cooperative binding interactions [2,5] and genotypic variation effects [3], they represent a pow-
erful approach to uncover the detailed cis-regulatory grammar of genomic sequences (see Figure 1C in main
text). Shallow ML approaches remain a highly useful alternative for assessing the performance of numerically
encoded DNA sequence features, such as DNA structural (shape) properties [12].
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DNA shape guides protein–DNA
interactions to define gene
expression
The specificities of protein–DNA interactions
are defined both by direct protein–DNA
readout, facilitated by the major groove of
the DNA helix, and indirect readout,
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Trend
Using shallow ML models, it was recently
shown in multiple eukaryotic organisms, in-
cluding Arabidopsis, that most TFs likely
combine both types of readout to recognize
their binding sites, as the integration of these
features improves binding site predictions
[12]. In line with this, local DNA structural
properties can be more highly conserved
than nucleotide sequence andwere similarly
found to contribute to TF cooperativity, a
mechanism where TFs bind DNA coopera-
tively and thereby strengthen their affinity [5].

Furthermore, due to the ability of DNNs to
learn and uncover multiple informative
data representations in their internal hid-
den layers (Figure 1B), they can automati-
cally learn the intrinsic protein–DNA
binding properties underlying gene ex-
pression, which is likely the reason for
their high performance [2,9]. The learned
regulatory grammar contained in the
models’ hidden representations can be
interpreted by a number of methods and
collectively includes both known cis-regula-
tory elements as well as multiple novel ele-
ments and features [10] (Figure 1C). These
include weakly interacting motifs and motif-
flanking regions, which are known to under-
lie weak interactions with low-affinity TFs
and can have highly conserved structural
profiles that affect coregulator or TF binding
around or at the binding site [5,10]. Also un-
covered are motif associations across the
whole gene regulatory structure, which
were found to explain practically the entire
dynamic range of gene expression, further
indicating how all regions contribute to the
joint regulation of gene expression levels [2].

Synthetic regulator design and
future challenges
Although themajority of current regulatory in-
sights were obtained in non-plant organ-
isms, such as the eukaryotes yeast and
human as well as bacteria, the innovative
ML approaches represent an invaluable re-
source for the plant science field, both for im-
proving predictions as well as for designing
novel synthetic regulators. A crucial point is
s in Plant Science, December 2022, Vol. 27, No. 12 1207
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that the whole gene regulatory structure
should be considered in regulator designs,
so that when changing one regulatory region
also the adjacent regions and coding region
properties are taken into account.

Future challenges thus include: (i) building
and evaluating sequence-to-expression
models to capture regulatory fitness land-
scapes across different plant organisms,
including tissue and condition-specific
models; (ii) quantifying the amount of regu-
latory information in different regions and
deciphering the regulatory grammar of
both transcription and translation; (iii) de-
velopment of population-scale models
based on multiple genotypes to increase
the resolution and accuracy of evaluating
sequence variant effects; (iv) analyzing
and cataloging the natural regulatory ele-
ments found in plant model organisms
and their joint effects, including the use of
different coding regions, on gene expres-
sion; (v) further unraveling the mechanisms
and contributions of DNA structural prop-
erties to protein–DNA binding and gene
regulation; and (vi) development of ap-
proaches to generate de novo regulatory
elements, resulting in libraries of both nat-
ural and synthetic elements with docu-
mented combinatorial effects.
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To conclude, the application of DNNs in
deciphering gene regulation can substan-
tially reduce the extent of required wet-lab
experimentation and validation. Once built,
models capturing detailed regulatory fitness
landscapes enable pure in silico investigation
of gene regulatory principles and designs,
addressing fundamental research questions
and facilitating multiple development objec-
tives in the plant sciences. This can greatly
impact plant breeding approaches, protein
production in planta, and biosensor design.
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