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Highlights
The integration of genomics and

phenomics will speed the devel-

opment of climate resilient crops;

however, these omics technologies

are generating large, heteroge-

neous, and complex data much

faster than currently can be

analyzed.

First-generation AI is being used in

surveying and classifying omics

data; however, it is designed to

solve well-defined tasks of single-

omics datasets that do not require

integration of data across multiple

modalities.

Next-generation AI can change the

dynamics of how experiments are

planned, thus enabling better data

integration, analysis, and

interpretation.

There is a critical need to develop

means by which to open the black

boxes prevalent in many current AI

approaches so that they can be in-

terpreted meaningfully from a

complex biological perspective. AI

decisions and outputs can be ex-

plained by breeders and re-

searchers via human–computer

interaction.
Breeding crops for high yield and superior adaptability to new and variable climates is impera-

tive to ensure continued food security, biomass production, and ecosystem services. Advances

in genomics and phenomics are delivering insights into the complex biological mechanisms that

underlie plant functions in response to environmental perturbations. However, linking genotype

to phenotype remains a huge challenge and is hampering the optimal application of high-

throughput genomics and phenomics to advanced breeding. Critical to success is the need to

assimilate large amounts of data into biologically meaningful interpretations. Here, we present

the current state of genomics and field phenomics, explore emerging approaches and challenges

for multiomics big data integration bymeans of next-generation (Next-Gen) artificial intelligence

(AI), and propose a workable path to improvement.

Why Modern Plant Breeding Can Benefit from AI

Advances in breeding and agronomic practices for food crop improvement were largely responsible

for the first green revolution, which doubled crop yields in less than 50 years [1,2]. If agricultural pro-

ductivity is to be improved even more over the next 50 years, breeding must achieve unprecedented

increases in yield and resource-use efficiencies while safeguarding harvests and preserving the envi-

ronment and ecosystem services (see Glossary). Assessment based on a yield dataset comprising

thousands of observations of wheat cultivars with diverse responses to weather conditions suggests

that current breeding programs do not sufficiently prepare for climatic uncertainty and variability [3].

Consequently, the demand for climate resilience (i.e., the capacity to buffer against climate-related

uncertainty and variability [4]) of crops must be better articulated [3]. The general goal of breeders is

to make gains in yield by predicting which lines will produce the best progeny when crossed together.

Advances in phenomics and genomics have provided unprecedented amounts of new data, which

has allowed breeders to continue to push the yield trend upwards [5–8]. In particular, genomic selec-

tion (GS), where the breeding value of an individual is predicted solely from genetic markers, has

begun to supplant more traditional pedigree-based methods in several cereal and legume crops

such as wheat, maize, soybean, and chickpea, as well as forest tree species such as eucalyptus, pines,

and poplars [9–11]. Despite this success, the lack of predictive accuracy for many complex traits, such

as yield, has revealed an inability to adequately model all of the relevant factors inherent to such

traits. The process is complicated by the fact that the observed variation between individuals can

be due to genetic (heritable) components, environmental components including farm management,

and often an interaction between the two whereby an elite line may grow predictably in one environ-

ment but poorly in another [12].

Comparative andmapping studies have shown that while much of the observed variation is heritable,

in many cases only a fraction of this heritability can be assigned to identified genetic factors such as

SNPs or small insertions/deletions (indels). Several reasons may explain this ‘missing heritability’.

First, complex quantitative traits often appear to be governed by the infinitesimal or omnigenic

model, in which many genes exert only a small effect and therefore go undetected unless very large

populations are analyzed. Second, the relationship between the genotype and phenotype is not al-

ways linear and small changes on one hierarchical level may have a large impact on other levels. How-

ever, many statistical models fail to explore nonlinear relationships. Third, in biological systems genes

are subject to complex regulatory networks, while their products often incur downstream modifica-

tions and interact with other pathways or protein complexes. Such conditional associations, known
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as epistasis, are difficult to detect in studies that map genotype to phenotype with linear models due

to low power and sheer computational demand.

The solution to the above problems begins with access to increasingly detailed and accurate data

in more individuals, so that the complete underlying biological and environmental systems can be

captured. Fortunately, the cost of genetic sequencing continues to plummet, innovative genomic

assays are continually invented that may shed light on missing heritability and genetic regulation,

and breeders have access to an ever-increasing suite of high-throughput sensors and imaging tech-

niques for a wide range of traits and situations in the field. Epigenomics, transcriptomics, prote-

omics, metabolomics, phenomics, and microbiomics together with approaches to gather informa-

tion about the microclimate and field environmental conditions have become routine. Omics

technologies are aimed primarily at the detection of genes (genomics), mRNA (transcriptomics),

proteins (proteomics), metabolites (metabolomics), phenotypes (phenomics), and methylation pro-

files (epigenomics) in a specific plant sample. However, the ability to accurately predict and select

the best lines, especially for specific environments, relies on our ability to model these immensely

complex systems from the web of genomic and phenomic data at hand. Multiomics big data is a

prominent example of such high-dimensional, heterogeneous datasets with very complex multi-

level structures (Box 1). Increasingly, AI assists with this process (Box 1), as in other industries con-

fronted with the challenge of big data. When utilized together, phenomics, genomics, and AI tech-

nologies can accelerate the development of climate resilient crop varieties with improved yield

potential and stability and enhanced tolerance/resistance/resilience to anticipated and simulta-

neous abiotic and biotic environmental stresses, and deliver higher genetics gains in farmer’s fields

in less time (Figure 1, Key Figure).

Therefore, the primary goals of this review are to introduce the concepts and procedures ofNext-Gen

AI, to envisage how it can deal with these challenges and interface with multiomics big data to accel-

erate the breeding process for climate resilient crops, and to suggest future research directions.
Leveraging Next-Gen AI in Plant Breeding

AI has shown impressive results in fields such as image recognition [13,14] and has become a focus for

big data analysis [15,16]. Current implementations of AI, such as neural networks (NNs) and extreme

gradient boosting (XGboost) [17], have been focused nearly exclusively on predictive accuracy. In

many cases, this accuracy comes at the cost of discernibility and explainability. Examples of these

are NNs, which build nodes and paths that try to mimic brain neurons, and deep learning (DL)

methods that incorporate multiple levels in a nonlinear hierarchical learner [18]. The inner workings

and decision processes of these AI algorithms are opaque. Results can be seen but an understanding

why a decision was made is lacking. Therefore, while AI has been a powerful tool for prediction and

classification, it has not yet been a tool for knowledge distillation. The first step in the progression

towards Next-Gen AI is the introduction of new algorithms of explainable AI that not only have a pre-

dictive model but also expose rules that are meaningful for human understanding (Box 2). This allows

the researchers running the AI models to design better tests and obtain better data to improve future

iterations.

Intrinsic to AI, multiple models or algorithms can be used to find the best fit for any given scenario, as

stated by the ‘no free lunch’ theorem [19], which essentially establishes that there is no universally effi-

cacious optimizer for all problems. That is, there is no guarantee that a model trained on one dataset

will work on a different dataset [20]. Thus, it is important that each model be assessed for its appro-

priateness with respect to the problem. Likewise, the speed and efficiency of AI algorithms varies

considerably, especially at the scale of big data. The recent introduction of the world’s most powerful

supercomputer, Summit, which has world’s largest collection of graphical processing units (GPUs) (27

000), opens an exciting avenue for the integration of AI and scientific discovery. Therefore, Next-Gen

AI will operate through multiple models and scales, compiling an ensemble [see Box 2 for the rele-

vance to ensemble learning (EL)] of optimal learners for each subtask and taking advantage of

ever-increasing computational power.
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Glossary
Algorithm: a set of well-defined
computational instructions that
extract, process, calculate, and
estimate data to solve a problem.
Artificial intelligence (AI): a num-
ber of ML algorithms that build a
model of rules learned from
training data.
Big data: the digital convergence
of structured data found inside
databases and unstructured data
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With respect to plant breeding, Next-Gen AI is conceptually designed not only to predict breeding

value for complex traits across environments and time scales, but to iteratively learn and improve. This

requires the intelligent and efficient mining of data that truly represent the underlying systems

biology and environment, plus interaction from humans at both the input and the output end.

Breeders can thus better predict influences that affect yield and respond more quickly to changes

not previously encountered. In addition, they can predict which variety or varieties would work

best in a specific environment and what soil conditions are likely to be favorable. This open, collab-

orative approach will also lead to the utilization of underexploited germplasms, thus increasing the

available genetic diversity in breeding gene banks. Next-Gen AI also has the potential to positively

impact soil health and productivity by providing recommendations based on the metagenomics of

microbial communities.

flowing from new sources, such as
sequencing platforms, sensors,
satellites, and aerial- and ground-
based platforms. This allows re-
searchers to capture and analyze
the data and make more informed
decisions based on that informa-
tion (Box 1).
Black box: a description of some
ML systems (i.e., DL). They take an
input and provide an output, but
the calculations that occur in be-
tween are not easy for humans to
interpret or understand.
Climatype: the climate and envi-
ronmental variables found at the
points of origin of evolved
genotypes.
Data commons: a unified data
repository that enables the plant
research community to store,
share, access, and interact with
interoperable tools for analysis
across multiomics studies in sup-
port of augmented breeding.
Data cube: a multidimensional
dataset that generalizes matrices
in a third dimension.
Data ecosystem: the infrastruc-
ture and applications that are
used to capture, store, access,
and analyze omics data. Sustain-
ing the omics big data ecosystem
requires coordinated efforts
among stakeholders such as data
creators, data maintainers, data
users, and others.
Deep learning (DL) and rein-
forcement learning (RL): autono-
mous and self-teaching systems.
DL takes raw features from an
extremely large, annotated data-
set (e.g., a collection of images or
genomes) to train algorithms via
various layers of artificial NNs to
create a predictive tool based on
patterns buried inside. Once
trained, the algorithms can apply
that training to analyze new data.
RL dynamically learns by adjusting
actions based on continuous
feedback to maximize its
performance.
Field Phenomics Brings Opportunities for Accelerated Breeding

Observed phenotypic variation in living organisms is shaped by genomes, the environment, and their

interactions [21]. Phenotyping plants under their natural and uncertain environmental conditions re-

mains challenging due to the high level of phenotypic plasticity of many traits. However, plant

breeding has led to a substantial reduction in the phenotypic plasticity of crops, probably due to

the process of selection, canalizing many of the yield-related traits. Most of these traits are associated

with regulation of plant water balance (e.g., stomatal conductance, transpiration, photosynthesis)

and thus result in higher plant water uptake and lower water-use efficiency, leading to increased

crop susceptibility to drought and other environmental stresses [22]. Hence, most empirical studies

and current breeding efforts have been aimed towards improving abiotic stress tolerance. Unfortu-

nately, the translation of phenotypic data generated from multiple genotypic sources and environ-

ments into practical knowledge remains limited. The integration of genotypic, environmental, and

phenotypic data into meaningful knowledge reflecting the plant stress response profile is chal-

lenging, mainly due to the complexity of correlating the dynamic changes in environment to the

phenotypic plasticity in a comparative way for many plants simultaneously. This challenge is known

as the genotype–phenotype (GP) gap [23]. One of the ultimate goals of agronomic abiotic stress

tolerance research is to identify the most relevant yield-related traits that are easy to measure as early

as possible in the plant’s life cycle, to enable the selection of the best-performing candidates for in-

clusion in further evaluations [24]. As many of these traits are highly (and almost instantaneously) regu-

lated by the environment, screening should be done under as close as possible to natural-like unsta-

ble conditions; thus, the system must involve continuous monitoring of the plant environment (soil–

atmosphere) as well as plant responses to changes in that environment. It is also important that the

measurements be conducted simultaneously on all plants, as nonsimultaneous measurements may

lead to the inadvertent comparison of traits under different ambient conditions.

One possible way to bridge the GP gap is the use of physiology-based gravimetric systems that

enable direct measurement of the soil–plant–atmosphere-continuum (SPAC). This high-throughput

functional phenotyping system (HFPS) enables the direct measurement and analysis of many physio-

logical traits and their plasticity, hierarchy, and interactions [25].

Plant responses to the environment are dynamic both spatially (small differences at different locations

of the growth zone) and temporally (from hourly changes in atmospheric conditions throughout the

day to different climates throughout the growing season). Thus, phenotyping of complex traits not

only is better represented under uncertain environmental conditions such as natural field conditions

(or a good simulation of those conditions in controlled growth facilities), but also validates the

authenticity of the measurements. Because of the feedback between plants and the environment,

identical growth scenarios will be hard to repeat and analyze. For these reasons, deep phenotyping,

involving continuous and simultaneous comparative measurements of many plants under multiple

environmental conditions, coupled with Next-Gen AI will serve as a key tool to understand the

plant–environment interactions and to unlock greater potential in data-to-knowledge transfer.

Another important aspect that may derive from a better understanding of plant–environment inter-

actions is the improvement of the genetic detection of stress response QTLs. High-throughput
Trends in Biotechnology, November 2019, Vol. 37, No. 11 1219



Ecosystem services: functions
provided by the different taxa
resident in complex ecosystems.
The evolution of such co-
dependencies allows commu-
nities of species to grow in envi-
ronments in which any individual
taxon may not be able to grow or
thrive in isolation.
Ensemble: a set of individually
trained algorithms whose com-
bined outputs are more accurate
than any of the single learning al-
gorithms in the ensemble. EL
combines the predictions of mul-
tiple trained NN models at once
to achieve better generalization
performance of learning algo-
rithms and reduce the variance of
predictions error (Box 2).
Explainable AI: the ability of al-
gorithms to predict and provide
interpretable explanations of their
decisions. It allows researchers
and human users to receive the
best possible predictions and
interpret the algorithm’s outputs
(Box 2).
Field phenomics: a field-based
high-throughput phenotypic
evaluation under the real condi-
tions experienced by the plant.
Generative adversarial networks
(GANs): deep NN architectures
comprising two nets (generator
and discriminator), pitting one
against the other. They are trained
in an unsupervised fashion to
generate new data instances (the
generator) and evaluate them for
authenticity (the discriminator).
Genome-wide association
studies (GWASs): scanning
markers across the genomes of
many individuals of a particular
species to test for statistically
significant associations between
SNPs and phenotypes.
Genomic selection (GS): predic-
tion models developed by esti-
mating the combined effect of all
existing markers simultaneously
on a phenotype. Models are
developed by phenotyping and
genotyping a training population,
so that all loci that regulate a
phenotype are in linkage disequi-
librium with at least one marker.
Knowledge: information or in-
terpretations of the basic data
(i.e., raw facts, observations) from
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phenotyping also has been adopted successfully to assess the genetics of estimated biomass dy-

namics in maize [26]. The integration of functional genomics with functional physiological phenotyp-

ing is also expected to yield an opportunity to better understand plant stress responses over time and

in changing environments.

Field phenomics is a great suite of tools and methods to take on these challenges. Accelerated

breeding for agriculturally relevant crop traits is key to the development of improved varieties and

is critically dependent on high-resolution, high-throughput, field-scale phenotyping technologies

that can efficiently discriminate among better performing breeding lines within a larger population

and across multiple environments [27–30]. To be relevant to breeding programs, field phenomics

must consider the nature of the environmental stress in the target environment and deploy multisen-

sor unmanned aerial vehicle (UAV)- and ground-based platforms (Figure 1) that facilitate screening of

thousands of field-grown genotypes and the development of more comprehensive data manage-

ment, including crop modeling [29,31,32]. With the advent of novel sensors, high-resolution imagery,

and new platforms for a wide range of traits, tissues, and conditions, phenomics has been champion-

ing the collection of more phenotypic data over the past decade [33–39]. Alongside genomics, phe-

nomics is essential to support breeding programs and help breeders generate cultivars (commercial

varieties) more adaptable to diverse and challenging environmental scenarios [40]. Using a combina-

tion of genome-wide association studies (GWASs) [41,42] and high-throughput phenotyping facil-

ities, phenomics can serve as a novel tool for studies of plant genetics, genomics, gene characteriza-

tion, and breeding [43].

Although data regularly captured by phenomics platforms, particularly plant imaging data, are being

analyzed using a suite ofmachine learning (ML)methods [44], in the past few years DL has increasingly

been used to make more sense of phenomics big data as it has a greater potential for further

advancing image analysis [45]. For example, DL has greatly spurred the identification of plant features

such as leaf counting [46,47], the derivation of vegetation indices from red–green–blue (RGB) images

[48], the prediction of biomass traits [49,50], the detection of plant diseases [51], stress phenotyping

[52,53], and the scoring of morphological and developmental phenotypes in genetic populations [54].

These DL approaches can be extended to any trait of interest to breeding for which high-resolution

phenomics imaging data are available. Although these types of models typically operate as ‘black

boxes’ and require a leap of faith to believe their predictions, a recent study in soybean (Glycine

max) sought to look under the hood of the trained model to explain each identification and classifi-

cation decision made for a large class of stresses from RGB images of leaves [55].

Even if there is a good progress in image analysis and the spectral identification of phenomics data,

profiling of plant dynamic physiological responses to changing environment status using these data is

negligible. Namely, a single data point in time (i.e., an image taken above the canopy of the crop in

the field) could be very different from the same image taken shortly after due to dynamic changes of

soil–atmosphere conditions and the biological and physical responses. This is because of the multi-

variate and reciprocal effects of the collected data. Accordingly, a possible solution may be achieved

by creating phenomics databases correlating the precise physiological profiles of plants under

certain SPAC conditions to many phenomics methods. This detailed phenotypic data can be used

as a basis for Next-Gen AI, enabling the structuring and fitting of the data into models that could

be used for a better interpretation of field phenomic data.

As major breakthroughs in phenomics are witnessed [56], a long path to uncover and harness the

complexities of integrating phenomic layers with genomic heritability and interactions with the envi-

ronment still lies ahead, and ML is still far from fulfilling its potential in this research. Nonetheless, a

great opportunity for Next-Gen AI is the ability to bridge that gap between phenomics and genomics.
a particular point of view, which
has been validated and is thought
to be true.
Knowledge distillation: a
compression method for training
a small model to mimic a
New Frontiers in Genomics

Historically, the detailed high-throughput analysis of phenotypic responses to a variety of environ-

ments has taught us much about the physiological adaptation of plants to abiotic stresses. Applying
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pretrained model or ensemble of
models that have been previously
trained on large datasets. It is
used to transfer the knowledge
from the cumbersome model to a
small model that is more suitable
for deployment by minimizing the
loss between itself and the larger
model.
Machine learning (ML): the use of
algorithms that can mathemati-
cally and statistically learn from
data to extract important infor-
mation, find hidden patterns, and
make associations and
predictions.
Microbiomics: the taxa and
omics-based study of the micro-
biome - the collective omics of
plant-associated microorganisms
(i.e., bacteria, fungi, and microbes
from other kingdoms).
Model: an equation that repre-
sents relationships and identifies
patterns among features of a
dataset.
Neural network (NN): a frame-
work for many different brain-
inspired ML algorithms to work
together and process complex
data inputs. It is a connectionist
computational model, in which
layers of neuron-like nodes mimic
how human brains analyze infor-
mation. The layers in a NN filter
and sort information and commu-
nicate with each other, allowing
each layer to refine the output
from the previous one.
Next-generation (Next-Gen) AI: a
framework that incorporates ex-
plainability, interpretability, EL
(with a wide variety of learning
architectures), and TL, uses the
context of previously known in-
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this knowledge to breeding programs aimed at developing resilient crops can provide a test case for

Next-Gen AI. A Next-Gen AI breeding program requires detailed genomic data that can be accu-

rately linked to adaptive traits. As a first step, modern breeding often starts with an assembly of a

reference genome that is used as a basis for comparison between individuals of the species so

that allelic variants can be identified, mapped, and eventually associated with phenotypic variation.

Sequencing technologies have improved dramatically, allowing for more complete and accurate

reference genome assembly. For example, the recently launched 10KP plan, as part of the Earth Bio-

Genome Project [57], aims to sequence 10 000 different plant species including representatives of all

known taxonomic families. For many species, this effort will provide a first genome-wide assembly,

which may serve as a reference for subsequent resequencing initiatives that allow the detection of

allelic variation within species [58]. This natural variation might then be exploited for the introgression

of wild alleles in domesticated elite varieties, to improve the resilience of crops and forest trees to

changing climate conditions. With each new genome sequence completed, opportunities expand

for exploring genome regulation and variation and updating reference genome annotation using En-

sembl browser release 93 [59]. Future strategies will also focus on the distribution of genomic data in a

manner that enables researcher-driven analysis [59].

Parallel to the development of sequence technology, other omics profiling techniques have matured.

RNA-seq has developed into a high-throughput method to quantify gene expression in multiple tis-

sues at different developmental stages and under varied stresses [60]. ChIP-seq [61] and DNA affinity

purification sequencing (DAP-seq) [60] reveal the genomic locations where transcription factors bind

to DNA to perform their role as regulators of gene expression [60]. Further detail is provided by the

assay for transposase-accessible chromatin sequencing (ATAC-seq) [62], which reveals the portions of

chromosomes that are ‘open chromatin’ (i.e., accessible to regulatory binding [63,64]). Together

these assays provide unprecedented insights into complex regulatory networks that often influence

phenotype more than mutations in genes do. The metabolome and proteome can also now be accu-

rately and comprehensively analyzed. The genetic analysis of these intermediates of the genotype-to-

phenotype map, in relation to observed variation in the phenome, will greatly assist in elucidating the

genetic architecture of complex traits and offer the opportunity to understand the flow of information

that underlies plant responses to environmental stresses.

Our increasingly detailed access to systems biology data, from allelic markers and gene expression

levels to expressed proteins, tissue-specific metabolite concentrations, and complex regulatory net-

works, gives us data layers that more closely reflect the true biological complexity underlying pheno-

typic variation. The challenge remains, however, of how to correctly integrate these data layers

together, link them with environmental stress responses, and model the entire system accurately

so that breeding can accelerate.
formation, and facilitates the use
of human knowledge and experi-
ence for experimental/field trial
design and results interpretation.
Phenotypic plasticity: the pro-
duction of more than one pheno-
type from the same genotype
when exposed to diverse
environments.
Polytope: the generalized data
space that extends 2D matrices
into spaces of arbitrary di-
mensions. Omics and phenotypic
measurements may each have n
dimensions of environmental and
temporal variables that form these
complex polytopic spaces.
Transfer learning (TL): a ML tech-
nique in which an algorithm learns
to perform one task and leverages
that knowledge when learning a
different but related task.
Linking the Genome to the Phenome: Next-Gen AI-Based GS

Current approaches to breeding climate resilient plants are focused onGS. The basic premise of GS is

that the heritable (genetic) component of the trait can be viewed as having been generated by the

combined effect of all underlying genome-wide variations (e.g., SNPs, indels), so models attempt

to estimate the effects of each genetic variant on the phenotype while accounting for environmental

effects. A statistical model is developed in a training population that has been both genotyped and

phenotyped [65]. In essence, this is a task of mapping the genomic data layer (e.g., SNPs) to pheno-

types (e.g., drought tolerance). The developed model is then applied to an independent breeding

population that have only been genotyped, enabling prediction of their phenotype potentially years

before the mature phenotype becomes measurable [65]. Higher accuracy of prediction can translate

into increased yields in shorter breeding cycles.

If only genotypic and phenotypic layers of data are available to the model, the integration of regula-

tory circuits within and between omics layers is not taken into consideration. However, is well known

that the variation of complex traits is subject to these regulatory circuits. Genomic signatures (e.g.,

alleles, haplotypes) that eventually affect the variation of a phenotype are often muted within the
Trends in Biotechnology, November 2019, Vol. 37, No. 11 1221
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complexity of interacting omics layers. Higher omics levels, such as gene expression or metabolite

concentrations, intrinsically integrate additive and epistatic signals from multiple genetic loci. It

therefore stands to reason that omics layers can be better predictors of phenotype than SNPs alone

due to their molecular proximity to the phenotype.

Currently, most GS models are limited to genotype and phenotype data. Therefore, mapping be-

tween genotype and phenotype is a highly challenging statistical task, since the biological distance

between these layers obscures the true effect that SNPs have on the phenotype under varying con-

ditions. Many approaches have been developed, including mixed-effect linear models, Bayesian

models that endeavor to select only the most important predictive SNPs, and nonparametric ML

and NNs [66]. Current GS models are prone to losing accuracy when the training population is not

closely related to the breeding population (as might occur when predicting across different breeding

cohorts) or when predicting across generations and/or environments. To date, NNs, which are supe-

rior predictors for many other specialized big data problems [18], have failed to consistently improve

the accuracy of GS over statistical learning methods such as decision trees and simpler parametric

models [66–69]. Why is this the case and what does the future hold for AI-based GS? Firstly, the

strength of AI lies in its ability to find complex relationships and interactions within large datasets.

However, since GS approaches today rely on mapping SNPs to phenotype, many other important

data layers that explain trait variation have not been made available to the model. This gives an

advantage to simpler models while depriving AI of its strengths. Secondly, GS models (including

NNs) are typically treated as a black box. Data goes in, predictions come out, yet little is learned

about the actual functional biology of the phenotype and it is therefore a struggle to improve the

models iteratively.

From the breeders’ perspective, if they have access to a rich set of omics and environmental data

there are many ways in which they can manipulate the system to achieve a desired phenotype in

the context of where the genotype will be deployed. By making changes to omics levels that lie be-

tween the genotype and the phenotype they can achieve a greater, and more refined, impact on the
Box 1. Making Sense of Big Data in the Era of Next-Gen AI

The term big data was coined by Cox and Ellsworth in 1997 and originally referred to data being too big to fit into memory and processed by conven-

tional means [72,73]. Here, the definition of the eight Vs – volume, velocity, variety, variability, visibility, value, veracity, and vexing – is expanded (Fig-

ure I). Big data is now a reality in genomics and phenomics, with exciting opportunities arising from increased resolution and throughput in sequencing

and phenotyping technologies. Without AI, big data would be overwhelming and chaotic, but by incorporating AI into big data analytics the technology

becomes useful and rewarding. The combination of big data and AI has been referred to as both the fourth paradigm of science [74] and the fourth

industrial revolution [75,76]. There are great opportunities at the intersection of big data and Next-Gen AI. However, there are equally great technical,

scientific, and interpretive challenges to be tackled. Omics data present the raw material needed to gain insights into the complex biological mecha-

nisms that underlie plant functions in response to environmental stresses. However, many datasets are noisy, sparse, and irregularly sampled or

collected under different conditions and at ambiguous time points, resulting in ill-defined prediction targets. Furthermore, omics data are heteroge-

neous and high dimensional. They derive from a wide range of experiments that yield many types of information. The extent to which Next-Gen AI

can help us solve complex biological questions depends heavily on the protocols, experimental settings, and standards in place for efficient metadata

reporting and knowledgebase library development. Promising analytic solutions should align integration with research and incorporate prior knowl-

edge into learning workflows. Big data also represents a powerful source for biologists to improve experimental design and research focus [77,78].

Applying a careful experimental design by placing controls randomly on experimental trials, using additional biological replicates, and capturing as

much data as possible about environmental heterogeneity within and across field sites are important factors in generating good datasets with which

to properly train an algorithm. Highly-dimensional big databases organized in many layers of data domains are imperative for omics data in order to

capture consistent and high-quality phenotypic and genotypic information from various data sources. A clear research question alongside an appro-

priate computing infrastructure and robust statistical methods is required to extract important and relevant information that should guide follow-up

experiments [79]. Future efforts that integrate broad, robust collections of phenotype and genotype data in combination with a greater understanding

of data and relevant prior knowledge will create a rich resource for increasingly more efficient and detailed genome–phenome analysis to usher in new

discoveries in plant breeding (e.g. [80]). Because data are only as good as the tools available to analyze them, the plant omics community must devise

and develop specialized and publicly accessible data-management systems to reliably extract useful information from these data. An ideal data-man-

agement system would store data, provide common and secure access methods, and allow linking, annotation, and a way to query and retrieve infor-

mation [81]. In addition, making multiomics data findable, available, identifiable, and reusable (FAIR) supports the reuse of the data and discoveries

through good data management [82]. Taking advantage of international standards including the breeding API (BrAPI) also ensures integration and inter-

operability among several datasets [83]. Cloud and web computing that bring data and analysis together is crucial [84].
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Figure I. The Combination of Big Data and Next-Generation (Next-Gen) Artificial Intelligence (AI) in Plant Breeding.

A schematic illustration of the ‘input–system–output’ big data analytics process of analyzing multiomics datasets and creating intelligent features in

plant breeding innovation. The process comprises three major components – data capture, data analysis, and interpretation – that lead to insights

on the underlying biology and optimized breeding choices. High-resolution measurements of genome, environment, and phenome through

sequencing, sensing, and other high-throughput technologies are continuously increasing the amount of genotypic, environmental, and phenotypic

data for large breeding populations for multiple traits in multienvironment field trials. There are eight important attributes of omics big data, known

as the eight Vs: volume – the volume of image, sensor, and genome data; velocity – the speed at which data are ingested and processed; variety –

the heterogeneity of data, including structured, semistructured, and unstructured; variability – data whose structure and meaning are rapidly

changing; visibility – the visualization of data in a manner that is readable; veracity – the consistency, accuracy, and trustworthiness of data; value –

extracting actionable insight or functional knowledge from data without loss of information; and vexing – the effectiveness of the modeling. Vexing

is strictly related to the design of Next-Gen AI, which combines human knowledge and deep reinforcement learning for predictive and prescriptive

analytics. Predictive analytics are concerned with estimating the likelihood of future outcomes based on statistics, modeling, and probabilities; it

seeks to identify patterns in data and applies statistical models and algorithms to capture relationships between various datasets. Prescriptive

analytics goes beyond predictive analytics by providing insights into the different possible actions to guide humans towards plausible solutions to

complex problems; it quantifies the potential efforts of the different possibilities in order to advise on the best decision. This process can boost our

analytic abilities to identify better alleles for key genes and superior lines and ideotypes for the development of climate resilient plants.
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phenotype of interest. Specific alleles that affect critical gene expression and metabolite concentra-

tions can be introgressed. Chemical hormones can be applied in the field and even the target envi-

ronment is itself amenable to some manipulation (e.g., irrigation, fertilization). This potentially will

allow models to hold for future generations and across populations, since the underlying biology

is driving the accuracy rather than relatedness between individuals. However, it is important that

models are capable of employing this data to predict which actions are optimal for the breeder’s

goals.

Next-Gen AI holds promise for GS, particularly if the omics data that are acquired capitalize on the

strengths of AI and if explainable AI approaches are pursued that build on human knowledge to iter-

atively improve the model based on biologically validated outcomes. The acquisition of large-scale
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Bridging Phenomics and Genomics: The Next Challenge
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Figure 1. Next-generation phenomics, genomics, and artificial intelligence (AI) are perceived as key components of accelerating the plant breeding

process. Platforms for field-based, high-throughput precision phenotyping of multiple quantitative traits are needed to complement the wealth of

genomics information. For example, in the University of Tuscia PhenoBotix laboratory, unmanned aerial vehicles (UAVs), commonly referred to as

drones, fly over breeding plots collecting data on individual plants and single leaves that computers will analyze and integrate with genomics data to

make decisions about breeding. ‘PhenoDrone-1SL’ is equipped with integrated hyperspectral and light detection and ranging (LiDAR) sensors. Nano-

Hyperspec is a high-spectral-resolution sensor that captures radiation reflected from plants in the visible–near-IR (VNIR) range of 400–1000 nm, which

may contain information about leaf physiological status, water content, and biochemical traits in response to the environment. Micro-LiDAR is a 3D

laser-based remote sensor that allows precise and consistent measurement of plant architecture, canopy height, and growth rates. ‘PhenoDrone-2T’ is

equipped with thermal IR and red–green–blue (RGB) cameras. A thermal IR camera is a reliable and scalable phenotyping instrument for assessing

canopy temperature and providing early diagnostics and quantification of plant responses to water stress. A RGB camera can be used to rapidly and

objectively monitor stress response and formulate vegetation indices that provide information on plant health. Ground-penetrating radar (GPR) uses

high-frequency radio waves and travels between plants collecting data on root architecture, which is vital to understand plant responses to drought

stress and to breed crops with greater water-use efficiency and resilience in the face of severe environmental conditions. The collected streams of data

from multiple types of sensors can be integrated using AI. AI creates an unprecedented opportunity for multiomics data analytics and knowledge

discovery and will underpin efforts to develop plants with improved climate resilience. The photograph (left) is a drone aerial view of the poplar field

trial of an F2 breeding population in Savigliano, Italy aimed at dissecting the genetic architecture of drought tolerance in poplar. Phenotypic and

genotypic screening of natural populations or germplasm collections is also of paramount importance for addressing the opportunities of AI in

genotype–phenotype mapping.
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phenomics and genomics data, in addition to the molecular layers between them, such as transcrip-

tomics, proteomics, and metabolomics, will facilitate an era where AI models can find and explain

complex interactions (Box 3); for example, predicting how changing water availability affects the

expression of genes involved in plant growth while simultaneously impacting resistance to pests.
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Next-Gen AI is intended to automate much of the analysis, but human input is also critical at multiple

points in the process, which advocates for training and education of both computer scientists and bi-

ologists to fill the knowledge gaps. The first step forwards for breeding more climate resilient crops is

to define the problem and the target space for the solution and to establish how to best take advan-

tage of new algorithms, data collection, and computational power. This integration and definition of

the target space is critical because, without direction, an algorithm is not guaranteed to produce a
Box 2. Algorithms, Explainable AI, Humans, and Communities

Here we highlight some emerging trends in Next-Gen AI that might maximize the impact of omics for plant breeding.

More Knowledge from Smaller Datasets

Algorithms require large, well-annotated, and clearly labeled datasets deriving from a variety of experimental, environmental, and physiological stress

conditions so that they can efficiently learn to distinguish features and categorize patterns (Table I). To circumvent this requirement, researchers need to

become better at making the data (or metadata) associated with their studies accessible in a machine-readable format. Ground-truth data can also be

exceptionally valuable. Another promising solution is metalearning, whereby knowledge is learned within and across problems [85,86]. In addition, TL or

pretraining – the ability of an algorithm to improve learning capacities on one given small dataset (target) through previous exposure to a large dataset

(source) – becomes more applicable [87]. For example, TL allowed NN algorithms to apply image classification prowess acquired from one data type,

rodent cells, to another type, human cells [88]. TL also helps to reduce overfitting as the model generalizes well from training data to unseen data.

Recently, a new deep TL (DTL) approach was reported to make significant progress in extracting information from complex biomedical images [89].

Furthermore, due to the fact that each of the standard single learning algorithms has its own advantages and disadvantages (in terms of bias and

learning performance), EL, such as bagging (parallel ensemble method) and advanced bagging, has been increasingly used to learn an ensemble of

classifiers for collaborative classification. This approach compensates for the disadvantages of individual classifiers and improves the overall accuracy

of classification [90]. By combining bagging and boosting (parallel and sequential ensemble approaches), the prediction accuracy and speed of a broad

range of applications, and under a variety of scenarios, have been significantly improved [91]. Another option is to use generative adversarial networks

(GANs) to generate in silico data with properties of real data. For example, the Arabidopsis rosette image generator AN (ARIGAN) was used to generate

synthetic rosette-shaped plants [92]. This can be extended to multiomics datasets; for example, to generate larger gene expression datasets that can be

exploited to build predictive models of transcriptional regulation [93].

Explainable AI

The black box nature of AI models remains a great challenge for genomics and phenomics applications. The lack of explainability is endemic to most

black-box models and represents a major barrier to wider use [94]. This challenge underscores the importance of explainable AI that attempts to over-

come these limitations. Explainable AI systems are able to both reason and explain their behavior and decisions to researchers and human users. As

many of these systems are opaque in their operations, new approaches are available to provide highly accurate and meaningful explanations with

no loss of prediction accuracy [95–98]. In plant breeding, explainable AI is urgently needed for many purposes including phenomics and genomics. Plant

stress phenotyping remains predominately a tedious and time-consumingmanual rating exercise that is mainly based on visual symptoms performed by

trained plant scientists. An interesting example is provided by a recent study in which a robust and accurate explainable DL model has been successfully

used to not only automate the process of plant stress identification, classification, and quantification [99] but also to explain which visual symptoms are

used to make predictions [55]. Ongoing and emerging developments in the application of explainable AI approaches in genomics and phenomics will

enable us to envision an exciting future for plant breeding.

Plant Breeding Research Produced When Researchers and Communities Work Together Is Better for Society

Next-Gen AI platformsmust be built within the context of the problem that researchers and breeders are solving and in collaboration with farmers and AI

industry experts. Both cognitive systems and end users must be trained together as part of a symbiotic relationship. AI companies and plant breeding

and biotechnology companies must be prepared to invest in training technology users as much as they are training the system itself. Knowledge gener-

ated in partnership with seed banking should also be encouraged. Phenomics, genomics, and Next-Gen AI enable the screening and analysis of large

amounts of germplasm and offer a major expansion in the genetic variation available for breeding.

The Promise of Education and Knowledge Transfer

Lack of education of and knowledge transfer to breeders and farmers is often suggested as a significant bottleneck. To effectively transfer knowledge to

practice, community research networks and infrastructures such as the EU Plant Phenotyping Network (EPPN2020)i, the EU Infrastructure for Multiscale

Plant Phenotyping and Simulation for Food Security in a Changing Climate (EMPHASIS)i, EU Cooperation in Science and Technology (COST) Action

FA1306iii on the Quest for Tolerant Varieties: Phenotyping at Plant and Cellular Level, the International Plant Phenotyping Network (IPPN)iv, the Austra-

lian Plant Phenotyping Facility (APPF)v, and the North American Plant Phenotyping Network (NAPPN)v as well as crop-specific initiatives such as the

Wheat Initiative of the Group of Twenty (G20)vii and the Consultative Group on International Agricultural Research (CGIAR)viii centers in the Excellence

in Breeding Platform are playing a major role in generating critical mass and stimulating interactions between researchers, breeders, and farmers. All of

these initiatives will enable greater technology uptake by breeders and farmers and integrate the community globally.
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Stage Step Approach Platform/Algorithm

1 Data capture Data sources Environment and

climate monitoring

Platformb Satellite and drone remote sensing, weather stations,

microclimates, geographic information systems (GIS),

geospatial, soil monitoring stations

Phenomics Satellites, UAVs, field scanning, phenotyping towers,

autonomous ground vehicles/rovers/tractors, proximal

sensing carts, glasshouses

Genomics,

transcriptomics,

proteomics,

metabolomics

Next-generation sequencing (NGS), short-read

technologies, long-read technologies, Hi-C technology,

gas/liquid chromatography–mass spectrometry

Data collection Extraction,

transformation,

and loading (ETL)c

dVertical distribution of data integration

eHorizontal distribution of data integration

2 Data storage Store and stream

‘in-motion’ semistructured

and unstructured data -

nonrelational (NoSQL)

databases

Data lakes for

storing data as

objects and

associated metadata

Distributed file systems

Store, index, and query

‘at-rest’ structured data -

structured query language

(SQL) databases

Multidimensional

data cubes

Data warehouses

3 Data

preprocessing

Dimensionality reduction Feature extraction Algorithmsf Principle component analysis (PCA), t-stochastic neighbor

embedding (t-SNE), partial least square (PLS)

Feature selection Least absolute shrinkage and selection operator (LASSO),

elastic net, ridge regression, recursive feature elimination–

support vector machine (RFE-SVM), correlation-based

feature selection (CFS)

4 Data analysis Segmentation Clustering Markov clustering, spectral

clustering, association rules,

independent component

analysis

NNs, iterative random

forest (iRF), Markov chain

Monte Carlo (MCMC),

Q-learning, deep Q-network

(DQN), Bayes optimal

classifier, deep autoencoder,

deep belief networks

(DBNs), deep forest, GANsg

Classification Decision trees (DTs), support

vector machine (SVM), random

forests (RFs), naı̈ve Bayes

classifier, logistic regression,

nearest neighbor classifier,

latent Dirichlet allocation (LDA)

Prediction Regression Linear regression (LR), Markov

chain, regression trees,

temporal difference (TD)

5 Data

interpretation

Explanation Feature importance/

model selection

Local interpretable model-agnostic explanations (LIMEs),

Shapley additive explanations (SHAPs), DL important

features (DeepLift), integrated gradient, random

intersection trees (RITs)

Table I. Representative ML, DL, Reinforcement Learning (RL), and EL Algorithms and Platforms across the Data-Capture-to-Interpretation Chaina

aTechnology infrastructure such as servers, networking, virtual machine, operation systems, middleware, and runtime can be on premises or in the cloud.
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bVarious phenomics platforms use a range of sensors and cameras including, but not limited to, RGB, thermal IR, light detection and ranging (LiDAR), multispec-

tral, hyperspectral, fluorescence, ground-penetrating radar, and electromagnetic inductance.
cExtraction involves retrieving data from their sources then sourcing the data required for analytics; transformation involves cleansing and harmonizing data (e.g.,

filtering, removing duplicates) from their sources to the target through a declarative, traceable, reusable data pipeline; loading involves the movement of data to

data stores, streams, and analytics tools.
dVertical distribution refers to the partitioning of the different omic layers in multitiered architectures across a cluster of computers.
eHorizontal distribution deals with the distribution of a single omics layer across multiple computers.
fAll of these algorithms are relevant for ML, DL, RL, and EL. Because the field of artificial intelligence is developing rapidly, it will give rise to new algorithms and

many variants in the future.
gThese algorithms combine two or more deep NNs or classes of DL and RL algorithms. Many of these algorithms may fall into multiple categories.

Table I. Continued
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model that is predictive of the target space that was intended. A simple example of this is building a

model with too broad a solution space (i.e., the whole planet) to predict the best place to grow a crop,

resulting in a solution that the best place for said crop is on land. This information may be technically

accurate, but it is not useful. The same can be said about the data used as input for a model. A human,

for example, can be expected to predict the effects of heavy rainfall only if he or she has been

exposed to previous occasions of rainfall or gained knowledge about rainfall from others. Likewise,

an organism with improved drought tolerance can be bred only if the genotypic data for that organ-

ism can be linked to the phenotype (i.e., its responses to drought conditions). Themore complete and

accurate the data and themore relevant the target space, the better the inferences; it is then up to the

breeder to ensure that the algorithmic output is relevant to the problem.

All AI algorithmic models have a starting point that significantly influences the rate of learning and the

accuracy of the final model. Themore informed the starting point, themore accurate the final model is

expected to be and the faster that model will converge. In humans, this is analogous to being quicker

to learn new information in a subject you are already knowledgeable about than to learn new infor-

mation in a field you have no prior experience in. In ML, the process of preconfiguring the starting

parameters is called a ‘warm start’ and generally requires human insight to initiate appropriately.

Another process, transfer learning (TL), describes giving a model a warm start by applying informa-

tion learned from another previously trained model. Judging whether such a transfer of knowledge

from one model to another is appropriate is another instance that requires a human decision. In

the field of biology, this often entails the detailed study of a model organism and the application

of the knowledge gained from that system to other organisms. This must be done in an intelligent

way; knowledge from Arabidopsis is likely to transfer more informatively to alfalfa (Medicago sativa)

than to cattle (Bos taurus). These types of insights come naturally to humans and should represent the

type of conclusion that Next-Gen AI can come to as well. From a practical standpoint, it is important

for Next-Gen AI to have access to the genomics and phenomics of multiple species beyond the spe-

cies of immediate interest so that TL becomes an option. More data is always better for the model as

long as the Next-Gen AI can appropriately weight the information according to its relevance.

Although much data can be gathered in an automated manner, Next-Gen AI will require the knowl-

edge and rationality of humans (e.g., researchers, breeders, farmers) to evaluate the outcomes,

because for any given scientific question there are multiple approaches that can result in a solution.

There are many different algorithms that can address a dataset and problem from alternative per-

spectives, resulting in additional insights and levels of confidence. In the case of ensembling, advan-

tage can be taken of the no free lunch theorem and the use of multiple algorithms to producemultiple

solution spaces. The intersection of these solution spaces indicates agreement between different

methods and represents a ‘best-way’ forwards approach. The total solution space allows multiple al-

gorithms to address various edge cases that one algorithm may excel at handling in comparison with

others. Each of these algorithmic solutions is a line of evidence that can be used in conjunction with

each other and with external knowledge of the breeder to determine the best course of action.

Possibly the most important input humans will have in Next-Gen AI is in the case of external valida-

tion, including specific testing of identified features. Models can be predictive within given training

and validation sets and can provide hypotheses on the functioning of an organism. However, external
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Box 3. Analyzing Polytopic Spaces: A Key Challenge for Next-Gen AI

Historically, AI methods have focused on the use of an X matrix (e.g., an image) that is to be regressed against a Y matrix or vector (e.g., an image label).

While this has been very powerful it is a simplistic view of a complex biological system. It would be desirable to be able to include multiomics layers as

well as temporal, geospatial, and environmental variables in themodel and as such the representation becomes a series of polytopes of arbitrary dimen-

sion. However, given a set of polytopic data structures, how can one find combinatorial patterns within and across those structures that represent a

biological organism and its interaction with its environment? At present there are no available AI methods that can handle this level of complexity.

An algorithm that is capable of both building an accurate prediction frommultiple data layers to multiple data layers and finding the combinatoric inter-

active elements within and between those layers epitomizes the goal for Next-Gen AI (Figure I). Such an algorithm would be able to use the data

collected from each of the omic layers plus environmental data combined with priors taken from validated research to produce a model to derive pre-

viously unknown, important biological interactions. The most applicable classes of algorithm for this task are likely to be a DL approach such as convolu-

tional NNs (CNNs), or decision tree-based approaches like iRF.

CNNs can introduce various types of omics data at different node layers in the NN architecture, thus more appropriately representing underlying bio-

logical relationships than most other statistical models. Where NNs struggle, however, is to explain the underlying biological significance that drives the

outputs of the model. iRF, on the other hand, intrinsically has a very interpretable structure, but is limited to explaining how one data layer explains one

feature of interest at a time. Currently in development, however, is an expansion of iRF known as tensor iRF (TiRF), which is designed to model across the

multiple polytopic space and may provide one of the first tractable Next-Gen AI solutions for systems biology (Figure I). For example, using TiRF one

would be able to use SNPs, gene expression, and environmental data measured across time and sites in a set of genotypes to predict the phenomic layer

as well as find sets of genes and environmental variables that affect each of the phenotypes and combinations thereof.
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Figure I. Finding Combinatorial Effects in Multiomics Big Data: Towards the Development of More Sophisticated Artificial Intelligence (AI)
Algorithms.

Extending the use of omics and systems biology approaches is necessary to understand complex biological processes through the integration of datasets

(morphological, physiological, molecular, biochemical) at the level of a defined system (plant organelle, cell, tissue, organ; see red arrow). Notably, these

components are under the influence of environmental changes (biotic and abiotic stresses; see blue arrow). The integration of multiomics data, including

mutations defined through genomics, methylation profiles through epigenomics, mRNA levels through transcriptomics, protein abundance and type

through proteomics, metabolite levels through metabolomics, genotype and environment contribution to phenotypic variations through phenomics, and

metadata will enable us to create a global picture with higher informative power than single omics data. Ultimately, the combination of multiomics data

with temporal, spatial, and climatype data yields polytopes of arbitrary dimensions that are beyond the capabilities of current AI models. The vertical green

arrow highlights the next-generation (Next-Gen) AI models that enable the analysis of an organism in a dynamic multiomics fashion (genomics,

epigenomics, transcriptomics, proteomics, metabolomics, phenomics). The development of more sophisticated AI algorithms, such as tensor iterative

random forest (TiRF), will allow new integrated discovery spaces to be created that will have a large impact on breeding.
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validation is required, including field, wetlab, or greenhouse testing, to verify predictive accuracy and

incorporate new biological insights from the results of these tests into the next set of AI models. This

feedback loop of information distillation, hypothesis generation, and knowledge refinement can

continue iteratively to accelerate crop breeding and improvement. This includes the potential opti-

mization of crop yield across different environments and conditions.

Looking forwards, breeders should be encouraged to capture as much data as possible beyond

genotype and phenotype, especially as costs for obtaining such data decrease. Armed with

this data, Next-Gen AI, and a specific goal in mind, breeders can determine the mechanisms that

they can best employ to reach their optimal phenotypes and adaptations to targeted environments.
The Path Upwards in Next-Gen AI: From Augmented Breeding to Smarter Farming

Modern breeders are able to gather ever-growing amounts of data, and with the proposed Next-Gen

AI they will be able to do more with that big data than ever before (Box 4) to support sustainable agri-

culture. It is impossible for any human to truly take advantage of all of this data to connect between

the data layers or to understand what should be implemented in practice to optimize yield or resil-

ience. Consider, however, that breeders are conceptually NNs with decades of focused training

plus thousands of years of accumulated knowledge of breeding, climate, and biology. These

breeders can inform the inputs to the Next-Gen AI models defining boundaries on practicality and

economic goals. The more integrated breeders are in this process, the more they can improve the

models; the better the models, the better the outcomes (Figure 2). As breeders are able to incorpo-

rate changes suggested by Next-Gen AI, they will be able to test the improvements that the model

predicts, but by the next growing/breeding cycle the model will have become even more refined by

the new data. The more breeders are integrated into the data ecosystem, the more data the models

will have (Figure 2). Consequently, plant breeding research coproduced when researchers and com-

munities work together is more likely to be useful to society (see Box 2 for the relevance

coproduction).

Moreover, genomic resources can also be interrogated to identify targets for increased productivity

under different environmental conditions, focusing particularly on the interactions between genetics,

environment, and management (G3E3M) on trait plasticity [70]. In this case, M, which is basically a

way to modify E, can simply be included in prediction models as an environmental variable. M may
Box 4. An Example Application of the Agricultural Use of Next-Gen AI

UAVs (a.k.a. ‘drones’) take time-series phenotypic data, flying daily over the target crop and using a powerful

hyperspectral snapshot camera to accurately capture hundreds of wavelengths of light. The light striking each

pixel is broken down into many different spectral bands to provide significant morphological, physiological,

and biochemical information on what is imaged. This information is passed through a NN that has been trained

to describe this hyperspectral imagery as phenotypes of the crop, such as height, chlorophyll content, and

flowering. The NN is initially trained by a human (farmer, breeder, or researcher) manually labeling a dataset

with the appropriate phenotype values, effectively transferring the farmer’s knowledge to the NN. After this

training, the predictive process is automated by the NN. The information revealed by the NN is then combined

with known data, such as other sensors on the plot that measure environmental conditions, and with the known

genotypic data of the plants. Using this combined dataset, if the human needs to find the watering pattern that

promotes the best growth, he or she would apply a suite of algorithms in Next-Gen AI (see Table I in Box 2),

such as a second NN, to predict the ideal amount of water and inform the human of the optimal watering

schedule. Alternatively, if the human needs to select the next generation of the crop, another ML algorithm,

such as iterative random forest (iRF) [100], would use the plethora of phenotype values stored in the database

to predict the parents to cross that will produce the best set of progeny. It is the human’s prerogative to deter-

mine his or her end goals and desired traits. As this is an explainable AI model, it would be possible to under-

stand each prediction made, as the model would report the sets of interacting features that it is using for the

prediction. The availability of such an explainable AI model would have significant implications in farming and

plant breeding as the model could be deployed in mobile platforms or as a mobile application.
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lead to a significant impact on the ability of farmers to obtain valuable information from their fields

and thus to better control them during the growing season.

Wide-scale integration between field and algorithm is already underway for GS in cattle breeding. GS

was pioneered in cattle, and the cattle breeding industry continues tomaintain the cutting edgeof this

field [71]. Multiple cattle farmers upload periodicallymeasured phenotypes to a centralized database,

which continually augments the pedigree and data records, followed by reiteration of the GS algo-

rithm to inform selection choices. It stands to reason that plant breeding will follow suit in the future.

Barriers to integration, such as wireless data speeds and automation, are rapidly falling away with

fourth-generation (4G) and fifth-generation (5G) mobile networks and augmented global positioning

systems (GPSs) that provide increased accuracy and integrity of GPS information to farmers.
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Figure 2. Next-Generation (Next-Gen) Artificial Intelligence (AI)-Augmented Farm: Reimagining the Farm of the Future.

For a Figure360 author presentation of Figure 2, see the figure legend at https://doi.org/10.1016/j.tibtech.2019.05.007. Field phenomics offers high-

throughput, nondestructive technologies to quantify plant performance in response to the environment. Sensors mounted on platforms such as

satellites, drones, and farm machinery can be used to rapidly and precisely measure, over time and on high numbers of individuals, relevant plant

attributes in the field and inform selection decisions. In parallel, time-series microclimate data such as ambient air temperature, humidity, solar

radiation, and soil moisture level can also be repeatedly collected with ground-based sensor networks. The resulting large phenotype and

environmental datasets will be linked to genomics data collected on individual plants and used as a reference on which data analysis pipelines can be

developed. A cloud-based omics big data platform in plant breeding provides a single large dataset and computing ecosystem that can store, analyze,

and share these data. Next-Gen AI-enabled algorithms can then be used to evaluate breeding decisions and predict which variety or varieties will show

the best performance in field testing. These algorithms will ultimately accelerate the breeding process and enable breeders to scale their best ideas to

the size of their breeding pipelines. With advances in computing power, algorithms can be rapidly retrained with additional data to overcome the

environmental variability challenge and improve their predictive capability. Next-Gen AI will require farmers to actively participate in the development

and rapid deployment and adoption of superior food and tree crops. Farmers will also benefit from direct on-farm applications of Next-Gen AI to

predict crop yield and detect drought, pests, and diseases with high spatial resolution. Combining phenomics, genomics, big data, and Next-Gen AI

can potentially help farmers make informed and intelligent planting, farming, and management decisions. This data-driven systems approach, where

multidisciplinary and multisector collaborations are instrumental, will help to create successful digital and computational climate-smart agriculture and

forestry solutions for the future.
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Concluding Remarks and Future Directions

It is crucial that plant breeding education adapts to the digital revolution. Researchers and breeders

must become adept at weighing machine-generated advice against farmers’ needs. Generating

knowledge for plant breeding is of limited value unless researchers also have the capacity to trans-

form such knowledge into practice. Needed are knowledge–action approaches that incorporate

additional skills and perspectives that will help to produce knowledge used for the achievement of

augmented breeding and smarter farming.

Agriculture will rely on Next-Gen AI methods that make decisions and recommendations from big

data that are representative of the environment and a systems biology-based understanding of a

plant. Next-Gen AI is envisioned to enable breeding to perform at higher levels than previously

possible, efficiently utilizing highly heterogeneous and complex data.

One of the important challenges in the decade ahead will be the ability of individual researchers and

breeders to submit and share their own data to a data commons. Through this approach, they may

gain a deeper understanding of their own data, have greater control over how the data is being

used by the research community, and make large, or expensive-to-collect, datasets available to all.

This will be an important aspect of breeder–researcher partnered breeding efforts and will improve

the robustness of breeding programs. Without data sharing, it would be all but impossible for a single

research group to screen thousands of breeding lines and obtain sufficient data to support the kinds

of studies that Next-Gen AI requires.

AI-based approaches are now common workloads in cloud data centers. Thus, cloud data centers

are increasingly providing large numbers of GPUs to support AI applications. NVIDIA (the leading

manufacturer of GPUs) has recently determined that AI workloads are generating the majority of

network traffic in cloud data centers and has purchased Mellanox (the leading manufacturer of

adaptive routing InfiniBand backplanes which connects computer nodes within data centers) as a

strategic effort to ensure that there is adequate bandwidth in GPU-heavy data centers. Further-

more, wireless wide area network connectivity is rapidly expanding, and telecommunications com-

panies worldwide are making significant investments in next-generation wireless network technol-

ogies (e.g., 4G, 5G) and other companies are investing heavily in satellite deployment to provide

global internet access. Thus, high-bandwidth network connectivity will become increasingly ubiqui-

tous, even in remote areas. These industry trends would seem to indicate that cloud-based infra-

structure for AI applications will be increasingly readily available and therefore farmers and

breeders will be able to load data into cloud-based AI applications from handheld, drone, or

farming machinery platforms.

Impressive phenomics and genomics results usingML and DL have been reported. As encouraging as

these results are, they are not good enough yet to contemplate complete reliance on the technology

to speed breeding, which remains largely a demanding, time-consuming, and costly task. Regardless

of improvements in the efficiency of data generation, the plant research community still struggles

when stepping into the translational processes. Genomics, epigenomics, transcriptomics, prote-

omics, metabolomics, and phenomics are still mainly separate fields that generate limited knowledge

when viewed in isolation. Multiomics data should be used and integrated concomitantly to accelerate

the plant breeding process.

The good news is that the plant research community is producing a stunning array of solutions tomost

of these challenges. However, to be considered a success such solutions must have the potential to

be scaled up and adopted widely. The central challenge will therefore not be a knowledge gap but

translation failure. Already established research infrastructures must continue to intersect in mean-

ingful ways. Where possible, capacity building and technology transfer components should be inte-

grated into these efforts. There is also an urgent need for concerted action to create a framework for

research and development that coordinates and finances AI innovations in plant breeding. Public and

private venture capital and partnerships between the two should consider the potential effect of
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Outstanding Questions

When will phenomics and geno-

mics technologies increase their

throughput significantly and thus

reach their full potential for plant

breeding?

Agricultural environments are un-

controlled and unpredictable; how

arduous will Next-Gen AI testing

and validation tasks in a farmer’s

field be?

When will Next-Gen AI infrastruc-

ture, analytics, and applications be

available for a wide community of

researchers and companies

focused on plant breeding?

What are the largest remaining

obstacles for small-scale Next-Gen

AI implementation? How might

computer processing power, in-

house analytics capabilities, and/or

cloud-based data ecosystems, in

which data are deposited in a large

pool of computational resources,

be built and used to analyze

massive amounts of image and

sequence data at multiple scales?

If the implementation of longer-

term plant breeding AI projects is

expected, in what ways might the

academic, breeding, farming, and

AI communities be encouraged to

interact, facilitate interdisciplinary

research, and boost the two-way

transfer of knowledge?

How can public, private, and ven-

ture capital investments be at-

tracted for proof-of-concept Next-

Gen AI pilot projects? Is it more

useful for entrepreneurial firms to

look at Next-Gen AI through the

lens of business capabilities and

high potential business value rather

than technologies?
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increasing their own investments in AI-augmented plant breeding research and innovation. With

proper management and support, these investments can yield valuable returns in terms of discov-

eries and socioeconomic impact.

As Next-Gen AI becomes routine and prominent, our focus will necessarily shift from the technical

performance of algorithms to the new models of farming that hopefully enable a new agricultural rev-

olution that is better for both people and the environment.
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