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ABSTRACT

The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by

predictive breeding using statistical models for quantitative traits constructed based on genetic experi-

mental design and, more recently, by incorporation of molecular marker genotypes. However, plant perfor-

mance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and geno-

type by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model

using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and

enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimen-

sionality, provides predictive breeding with both tremendous opportunities and great challenges. Here,

we first review innovative technologies for predictive breeding. We then evaluate multidimensional infor-

mation profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data,

which have largely been neglected in data collection and are nearly untouched in model construction.

We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension

of genomic prediction, using integrated multiomics information, big data technology, and artificial intelli-

gence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including

spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding

data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at

both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales.

Finally, we provide perspectives on translating smart breeding into genetic gain through integrative

breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding

through iGEP, institutional partnerships, and innovative technological support.
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INTRODUCTION

Climate change, human population growth, and arable land loss

have driven the field of plant breeding to seek innovative ap-

proaches to produce improved varieties for more sustainable

crop production (Xiong et al., 2022). The phenotype (P) or

performance of a plant is the result of the genotype (G), growth

environment (E), and genotype by environment interactions

(GEIs). Many indirect selection indices have been developed to

efficiently select genotypes based on quantitative genetics for

phenotypic selection (PS) of target traits and their components

(Baker, 1986). In many cases, the phenotypic performance or

target trait can be predicted using genetic models constructed

with phenotypic and genotypic information. Various genetic

models, including the best linear unbiased prediction (BLUP)

procedure, have been developed for prediction (Bernardo, 2021).

Classical breeding pipelines can be improved by incorporating

new data-centric technologies for increasing genetic gain in

breeding programs (Wallace et al., 2018; Crossa et al., 2021).

With the development of molecular markers, genetic

variation across the whole genome can be effectively captured.

Thus, marker-trait association can be established and used to

develop genetic models to predict phenotypes (e.g., Lande and

Thompson, 1990). As a general method, genomic selection (GS)

was developed to predict complex traits from genotypic data

based on a model constructed using a training population that

has been genotyped and phenotyped (Meuwissen et al., 2001;

Bernardo and Yu 2007; Heffner et al., 2009).

In addition to the molecular marker and phenotype information

that have long been used in predictive breeding, multiomics

information, involving genomics, phenomics, enviromics, epige-

nomics, transcriptomics, metabolomics, microbiomics, and

metagenomics, are being generated with increasing complexity.

However, many of these data types have seldom been used in

predictive breeding. Full utilization of ‘‘omics’’ requires a strong

capacity to handle multidimensional big data, integrate informa-

tion from multiple sources, retrieve useful genetic and molecular

information through comparative analysis and artificial intelli-

gence (AI), and develop optimized genetic models.

To better understand crop phenotypes, environmental factors

need to be fully explored. A large volume of envirotypic data

has been amassed in breeding activities, for example, through

multi-environmental trials (METs). However, enviromic data

have seldom been utilized in predictive breeding and instead

have historically been considered as a single collective compo-

nent (E) in interpreting GEIs and all the unexplainable variations

(Flores et al., 1998; Kang, 2002; Xu, 2010). The E component

should be treated more comparably with G and P for improved

predictive breeding.

Bringing fully informative G, P, and E into the simple but universal

formula P =G+ E +GEI will generatemore powerful genomic pre-

diction (GP) models. However, the translation of G-P-E data into

meaningful knowledge remains a genotype–phenotype gap

(Gosa et al., 2018). Recently, multiomic (including enviromic)

data have been used in predictive breeding in several ways, by

developing predictive models (Costa-Neto et al., 2021a; Cooper

and Messina, 2021), enviromic similarity (Costa-Neto et al.,
Molecula
2021b), and the environmental index (EI) (Li et al., 2018, 2021b;

Guo et al., 2020) to enable integrated modeling and prediction,

and by defining climatic or landscape-based variables as enviro-

mic markers (Resende et al., 2021). Plant breeding is expected

to become smarter in the near future with the integration of

more data types and increasingly sophisticated and improved

predictive models.

AI can increase the probability of identifying truly favorable geno-

types by focusing on current breedingmaterials with the potential

to achieve optimal traits. Multinational seed enterprises (MSEs)

have been using AI or AI-like approaches for predictive breeding

of major crops for more than a decade. With the support of stake-

holders and funding agencies, AI will continue to evolve and

create new opportunities for plant breeding (Lee, 2021). This

article will address challenges in the field of predictive breeding

and develop a potential smart breeding strategy. This strategy

incorporates an integrated genomic-enviromic prediction (iGEP)

or selection by combining multiomics information with innovative

breeding technologies that are driven by big data and AI.
BIG DATA AND MULTIDIMENSIONAL
BREEDING INFORMATION

Plant breeding has been evaluated by the genetic gain that can be

achieved annually. For PS and GS, we have the following formula

for evaluation of genetic gain: DG = ih2sp/t and DG = irAsA/t,

respectively, where i is the standardized selection differential,

sp is the SD of population trait values (phenotypic basis), rA is

the correlation between genomic estimated breeding value and

true breeding value, sA is the additive variance, and t is time (in

units appropriate for breeding-program cycles, e.g., years). The

goal of iGEP is to improve rA by developing and optimizing pre-

dictive models using all available big data and AI technologies.

Predictive breeding helps reduce the cycle time required to

‘‘solve’’ the breeding puzzle, producing a plant with the desired

combination of traits, adapted to specific and changing

environments.

The history of plant breeding can be divided into four existing or

near-future stages (Wallace et al., 2018). The first stage largely

consists of incidental selection performed by farmers. The

second stage involves experimental design and statistical

analysis to improve selection effort, with the involvement of

phenotypic prediction. Marker-assisted breeding, including GP,

has been incorporated at the third stage. We are able to combine

all favorable alleles/haplotypes into optimal combinations at the

fourth stage. Smart breeding will enable effective use of both

traditional and big data generated in the past as well as in the

present and future.
A new era for breeding with big data

The phrase ‘‘big data’’ refers to datasets that are too large to fit

into local memory and cannot therefore be processed by conven-

tional means (Cox and Ellsworth, 1997). More generally, big data

has been defined as ‘‘extensive datasets’’—primarily in terms of

volume, velocity, and/or variability (NIST, 2015). In comparison

with smaller datasets, the sheer volume of big data can help

distinguish the part from the whole, the local from the global,

the current from the historical, and thus, ‘‘the tree from the
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forest.’’ It also helps us to distinguish signal from noise, cause

from association, and essence from phenomenon. We can

make decisions through comparisons of big data in many ways,

for example, at micro and macro scales, from finite and infinite

sources, and with zoom-out and zoom-in images.

Breeding-related big data have some specific and important attri-

butes, referred to as ‘‘the 9 Vs’’ (Figure 1). Plant breeding

programs often produce enormous datasets from myriad

sources, most of which are structured and can be organized in

Excel sheets or databases. However, a great deal of relevant

unstructured data are also produced, such as emails, social

media posts, data- and word-processing documents, web pa-

ges, and audio, video, and photo files. Sorting and extracting

value from these unstructured data are more difficult. Smart

breeding programs generate and use both structured and un-

structured data (Table 1).
Big data technologies: Data processing, data mining,
and cloud computing

Modern breeding programs face the challenges of collecting,

archiving, and mining big data from multiple sources. The raw

data generated in plant breedingmust be processed into a format

that can be used for computer-based analysis (e.g., machine

learning [ML]) (Figure 2). Data processing includes cleaning

(identifying and replacing incomplete, inaccurate, irrelevant, or

otherwise problematic data), integration (combining data from

different sources and formats), transformation (performing

normalization or concept hierarchy to suitably format the data),

reduction (presenting a less complex representation of the

data, e.g., through dimensionality reduction [DR], numerosity

reduction, and data compression), discretization (replacing

continuous raw values with interval ranges), and sampling

(selecting a subset of samples from which to estimate the

characteristics of the entire population). After processing, data

can be mined through statistical analyses, ML, artificial neural

networks (ANNs), or pattern discovery. Some of these methods

are used in modeling and prediction.

As we have scaled our breeding and begun to collect data spatio-

temporally, it has become virtually impossible to sift through the

ocean of data to perform predictive breeding without the assis-

tance of innovative technologies. Big data technologies, services,

and tools, such as Hadoop, MapReduce, Hive, and NoSQL/

NewSQL databases, and data integration techniques, in-

memory approaches, and cloud technologies, have emerged to

help meet the challenges posed by the flood of web, social me-

dia, internet of things, and machine-to-machine data. Bringing

big data under the cloud roof presents great opportunities and

advantages, allowing researchers to focus on data analysis and

mining instead of managing servers and databases.

Cloud computing can be used to deliver a full set of computing ser-

vices over the internet (Figure 2). Cloud-based scalable environ-

mentsmake it possible to deploy applications for data on the scale

of zettabytes. Cloud computing also simplifies connectivity and

collaboration within and between organizations, providing access

to relevant analytics and streaming data sharing. Many enter-

prises, includingMSEs, have adopted cloud computing to improve

their IT operations and develop better software more quickly. The
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major challenges of big-data cloud implementations include

network dependency, latency issues, and decreased control

over security and compliance (Chan, 2018).
‘‘Tri-typing’’ technologies and multidimensional
breeding information

The plant breeding pipeline begins with natural and artificial pop-

ulations and ends with the release of commercial varieties or

novel germplasm. In between, many types of big data are

collected: empirical breeding, selection indices, parental and

cross combinations, combining ability, hybrid performance,

parental relationships (relativeness and pedigrees), genetic dis-

tances, developmental and growth records, dynamic variation,

environmental factors, and varietal replacement or renewal

(Figure 2). Most of the data collected fall into three dimensions

(G-P-E). Collecting these data spatiotemporally introduces

additional dimensions.

Phenotyping

We discuss phenotyping first because tri-typing began with the

collection of phenotypic data in classical field trials and precision

and high-throughput phenotyping (HTP) becomes a bottleneck

compared with other typing technologies. Phenotyping can be

performed at various and ever-finer scales, such as populations,

individuals, plots, fields, plant parts, tissues, cells, molecules,

and metabolism. However, several phenomics issues must be

seriously considered: (1) scientific issues involving thewhole phe-

nome (integrated phenotypes), relationships with other omics,

genetics of phenotypes, and environmental effects; (2) technical

issues including throughput, precision, cost, automation, integra-

tion with other data, and data management; and (3) the phenomic

industry, such as agronomy and crop production.

Phenotyping has evolved from capture by visual observation and

simple facilities to HTP supported by improved facilities (Araus

et al., 2018). With the advent of HTP technologies, including

novel sensors and high-resolution imagery, an underutilized

reservoir of data has been generated over the past decade

(Kyratzis et al., 2017; Watanabe et al., 2017; Araus et al., 2018;

Atkinson et al., 2019; Harfouche et al., 2019; Pieruschka and

Schurr, 2019; Watt et al., 2020; Jin et al., 2021). HTP solutions

in plant breeding can be complicated by many factors that

influence output data: research goals, applications,

environments, crop species, plant parts and tissues, and

growth media. Two major HTP methods are generally used:

plant-to-sensor and sensor-to-plant (Li et al., 2021a). The

former uses fixed sensors, and the plants are brought to the

sensors for detailed phenotyping. This option may not be

feasible if it is impractical or impossible to move the studied

plant, and the phenotyping environment may vary significantly

from the field conditions under which the plant grows, limiting

the utility of the collected data. The alternative is the sensor-to-

plant method, in which sensors are moved close to the plant.

This can be achieved through the use of gantries, spidercams,

tractors, or unmanned aerial vehicles.

High-throughput, nondestructive field phenomics can be used to

quantify plant performance in specific environments. Compared

with their wild ancestors, modern crops are often planted in

genetically uniform stands with high densities and improved

characteristics, such as steeper leaf and root angles and shorter
thor.



Impacts 

Activities • Conversations • Words • Excel sheets • Numbers • Voice • Photos •  Videos • Sensors • 
Social media • Browser logs • Networks 

Text analytics • Sentiment analysis • Face recognition • Voice analytics • Movement analytics • 
Clustering • Classification • Correlation and association • Model fitting and optimization 

Scale • Precision •  Accuracy • Speed • Predictability • Efficiency  • Genetic gain • Economic gain 

Robotics • Image analysis • Crop and soil monitoring • Machine learning • Modeling • Training 
software • Predictive analytics • Data mining • Data-to-knowledge • AI-based GS • iGEP 

Datafication 

Breeding 
Events 

Analyzing 

Artificial 
Intelligence 

Properties Definition Conventional breeding Smart breeding 
Volume The size of dataset to be 

analyzed and processed 
Kilobytes to gigabytes, largely 
comprising pedigrees, 
phenotypes, METs and 
genotypes, with relatively small 
sample sizes 

Frequently larger than terabytes or 
petabytes, comprising G-P-E from multiple 
sources collected spatiotemporally, with 
large sample sizes and many 
populations/breeding lines 

Velocity The speed at which data 
are generated, produced, 
created, or refreshed 
(updated) 

Low speed, up to several 
megabytes per day, largely 
through manual observation and 
facility-supported processes with 
low- to medium-throughput 

Continuous and massive flow of data 
(several megabytes or more per day) from 
various omics and G-P-E across time and 
space, supported by high-throughput 
facilities with low costs 

Variety The heterogeneity of 
data, including 
structured, semi-
structured, and 
unstructured 

Largely structured with defined 
formats and lengths, such as G & 
P data for germplasm, 
populations and breeding lines 

In addition to structured data, semi-
structured and unstructured data are also 
included, e.g., special descriptions (in the 
form of audio, image and video files) from 
the community and social media 

Veracity The reliability 
(consistency, accuracy, 
trustworthiness, and 
availability) of data 

Relatively low availability; MET 
data for all breeding lines and 
phenotypic data across target 
environments 

High availability, e.g., omics data or 
historical climate and weather data across 
countries, regions and target environments 

Variability The extent, dimension, 
and speed at which the 
data are changing 

From medium to high, regional or 
partially genome, e.g., METs with 
missing entries or data or variable 
phenotypic values and scores  

From medium to high, global and whole 
genome, e.g., phenotyping traits at 
variable scales, omics data with variable 
depths and coverages, genotyping using 
different marker panels 

Validity Accuracy and 
correctness for the 
intended use 

Case-dependent, changing with 
traits, marker types, and 
platforms 

Case-dependent, changing with traits, data 
varieties, data generation platforms, and 
the evolution of those characteristics 

Visibility The visualization of data 
in a manner that is 
readable 

Traditional graphs to plot data 
points 

Clustering, tree maps, sunbursts, parallel 
coordinates, circular network diagrams, or 
cone trees to represent data 

Value The actionable insight or 
functional knowledge 
extracted from data 

Can be largely evaluated 
straightforwardly, and is 
dependent on individual case and 
data variety 

Useful datasets can be extracted from big 
data, but value can usually only be 
determined through data mining and 
extensive processing 

Vexing The effectiveness of the 
model that can be 
developed from the data 

Models can be developed largely 
using less-abundant phenotypic 
and genotypic data but with low 
effectiveness  

Models can be structured and optimized 
using diverse data sources collected 
spatiotemporally at the levels of G-P-E, 
with relatively high effectiveness 

Program design • Breeding platforms • Germplasm resources • Genetic variation • Prediction 
and selection • Generation acceleration • Multi-environmental trials • Plant variety protection 

Value 
Figure 1. Big data properties associated with smart breeding and their impacts and value.
‘‘Breeding events’’ represent the breeding activities fromwhich big data are generated. ‘‘Datafication’’ refers to the processes bywhich subjects, objects,

and practices are transformed into digital data. ‘‘Analyzing’’ refers to data analyses for breeding-related activities. ‘‘Artificial intelligence’’ (AI) represents

the fields that need to be supported or assisted. Breeding-related big data have large impacts on breeding value through increased genetic and economic

gain. Data properties are described by nine words beginning with V. G-P-E, genotypephenotype-envirotype; MET,multi-environmental trial; GS, genomic

selection; iGEP, integrated genomic-enviromic prediction.

Molecular Plant 15, 1664–1695, November 7 2022 ª 2022 The Author. 1667

Smart breeding Molecular Plant



Properties Conventional breeding Smart breeding

Measurement simple complex

data varieties described by

simple words

data varieties described by both simple words and complex language

largely empirical and less modeled empirical, highly dependent on modeling and simulations

relatively rough relatively precise and accurate

largely at the macro scale at both the macro and micro scales

less organized or standardized well organized and standardized

Source few or several multiple

largely focused on aboveground

plant tissues

includes both above- and belowground plant tissues

target environments both target and nontarget environments

largely normal environments both normal and stressed environments

plants plants and their surroundings/environments

plants as hosts hosts and their companion organisms

focused on target species target species and their relatives

pictures/photos as major images pictures/photos, audio, video, and many more varieties of data

Collection dispersed actions/events dispersed and systematic actions and events

manual + automatic manual, automatic, and simulated

observation by the naked eye with
relatively simple facility support

observation by the naked eye with sophisticated facility support (e.g.,
remote sensors and robots)

Processing less cleaning required significant cleaning required owing to missing data and complicated
structure

easy integration difficult integration

relatively little transformation needed various transformations required for data from different sources

no need for regular reduction dimensionality reduction often needed

little discretization required substantial discretization required

all data utilized subsampling required

Storage notebooks, paper, spreadsheets,

and databases

spreadsheets + databases, warehouses, the cloud, and local networks

cumulative over the short term cumulative and retrievable over the long term

individual computers and networks individual computers, sharable and connected networks, and the cloud

Sharing occurs through notebooks, emails,

and databases

occurs through warehouses, databases, networks, and the cloud

low level high level

largely private largely public and open

largely passive largely active

Analysis largely manual largely automatic and high throughput

driven by human brainpower
and computers

driven by human brainpower, computers, big data, and artificial
intelligence

largely delayed largely in real time

largely static dynamic and visualized spatiotemporally

Mining gene and genome structure gene and genome structure and function

individual cloning and functional

analysis, like individual fishing

group cloning and functional analyses, like net fishing

genetic metabolism and pathways genetic pathways and networks

simple gene modification and regulation complex gene modification and regulation

simple approaches approaches supported by big data and artificial intelligence

Table 1. Comparison of data properties between conventional and smart breeding.
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Figure 2. Overview of a system using big data and AI for smart breeding.
Data are collected for envirotype (E), genotype (G), and phenotype (P). Big data are stored, processed, and sampled to build and validate models with

machine and deep learning and AI-assisted deep analyses. Trained models are used for phenotype prediction and selection to develop improved va-

rieties. Smart breeding is driven by data, computational capacity, algorithms, and knowledge. GCA, general combining ability; SCA, specific combining

ability; MAS, marker-assisted selection; MARS, marker-assisted recurrent selection; GS, genomic selection; iGEP, integrated genomic-enviromic pre-

diction.

Smart breeding Molecular Plant
plant heights (Duvick, 2005; Denison, 2015). In general, the

currently available HTP platforms are not comparable with

visual observation, which enables close access to any

individual in a high-density population. International phenotyping

networks like IPPN and European plant phenotyping networks

(Morisse et al., 2022) could help to coordinate phenotyping

worldwide. Future robots, equipped with G-P-E big data and

AI, could enable automatic, precision HTP for all target traits,

rivaling human observation and measurement.

Genotyping

As the second ‘‘-typing’’ technology, genotyping has been

extended to include sequencing, genotyping by sequencing, mo-
Molecula
lecular profiling, and various other approaches that identify geno-

types. Over the past 40 years, genotyping technology has experi-

enced significant evolution in methods from systems based on

gels (G1) to those based on fluorescence (G2), solid chips (G3),

and liquid chips (G4), and finally to whole-genome sequencing

by ultra-automatic sequencing facilities (G5) (Xu et al., 2020b).

Technical revolution has significantly improved the throughput

(from single to millions of markers at a time), resolution

(from a 10–30-cM interval per marker to many markers per

gene), and cost (from several dollars to less than one cent

per data point). Genotypic information has been expanded

from DNA to RNA (identifying genes and gene expression
r Plant 15, 1664–1695, November 7 2022 ª 2022 The Author. 1669
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levels; Boyle et al., 2008), proteins, and networks (linking genes to

specific pathways), and can thus include all data that distinguish

between genotypes, such as full sequences and their variations,

multiomic variants, gene expression levels, and haplotypes.

Three representative genotyping platforms that evolved over the

past four decades are gel-based RFLPs, fluorescence-based

SSRs, and chip-based SNPs for application of different marker

types; KASP and TaqMan platforms for single-marker genotyp-

ing; and Illumina and Thermo Fisher systems for chip-based

high-density genotyping. In addition, genotyping by sequencing

has been used to randomly capture a large number of markers

across the whole genome (e.g., Elshire et al., 2011). As a more

recent genotyping technology, genotyping by target sequencing

combined with capture-in-solution (liquid chip) is a high-

throughput, automatic, and large-scale platform developed to

capture multiple SNPs (mSNPs) from single amplicons (Guo

et al., 2021). From a set of 40K maize mSNPs, multiple panels

with various marker densities (1K–40K mSNPs) could be

developed by sequencing at different depths. Two alternative

approaches, multiplexing PCR and probe hybridization, can be

used to generate a wide range of marker scales required for

different predictive breeding programs. Genotyping by target

sequencing has fixed target SNPs so that genotypic information

can be easily handled, accumulated, compared, and shared.

Envirotyping

The third ‘‘-typing’’ technology, envirotyping, refers to collecting

and capturing all environmental factors that could affect plants

and their phenotypes. The concept was first proposed at interna-

tional conferences as e-typing or environmental assay in 2011

and 2012, followed by formal publications (Xu et al., 2012; Xu,

2015) and full discussion as envirotyping (Xu, 2016). The term

‘‘envirotyping’’ has also been used to refer to the collective body

of methodologies for characterizing environments within METs

and frequent repeatable environment types (Cooper et al., 2014b,

2016). Envirotyping is considered one of the seven most popular

trends in plant improvement since the 1990s (Bernardo, 2016). A

recent literature search for the term ‘‘envirotype’’ identified two

references that were unintentionally missed in our previous

publications. The term was first introduced in ecosystems

research by Patten (1998), who considered that the direct

genotype–phenotype model of classical genetics was incomplete

and an external envirotype was needed to complete the mecha-

nism. Later, Beckers et al. (2009) adopted the term in the context

of disease research in mice, arguing that incorporating

envirotypes into experimental designs would be essential for the

accurate modeling of human diseases. To match with genotyping

and phenotyping, the term envirotyping is recommended to

describe the measurement of envirotypic (enviromic) variables,

including allmicro- andmacro-environmental factors that influence

the growth and development of plants.

Plants are affected by both internal and external environments.

Internal environments can be further divided into intercellular

and intracellular, including temperature, moisture, nutrients,

and chemicals. External environments are those that

surround the plant and have direct effects, such as light, air, tem-

perature, water, and soil. In a broad sense, crop management

(e.g., crop rotation) and companion organisms around the plant

(such as insects and weeds) can also be considered part of

such environments (Xu, 2010) (Figure 2).
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Soil, as a substrate for crop growth, is arguably one of the most

complex ecosystems on Earth (Daniel, 2005) and is a significant

component of the envirotype. Repeated tilling and cropping

result in perpetually disturbed soil with highly altered microbial

profiles. These changes are compounded by the effects of

fertilization, irrigation, crop rotation, and other agronomic

practices. Such disturbances cause plants to become

maladapted to the ecology of modern agricultural soil.

Researchers have sought to understand the genetics of microbial

associations and how plant genotypes affect activities such as

recruiting beneficial rhizobia and mycorrhizae, establishing

microbial communities, excluding pathogens, and potentially

influencing food quality (as reviewed by Wallace et al., 2018).

Microbial profiling and metagenomic analyses of environmental

and crop-associated microbial communities could be harnessed

as a part of the envirotype for future predictive breeding.

Environmental variables can be classified based on their predict-

ability, repeatability, and manageability. Mega-environmental

factors determined by crop seasons and geographic location

(longitude, latitude, and altitude), which include temperature,

light, precipitation, and soil properties, are largely predictable

across years, whereas others are less predictable. The environ-

mental effects, GEIs, and EE interactions caused by major envi-

ronmental variables are largely repeatable across experiments

and years, but those caused by minor environmental variables

are less repeatable. Some environmental variables, such as those

associated with agronomic management practice or with

managed or controlled environments, are manageable.

The concept of heritability for genotypes can be extended to en-

virotypes. The genotype has 100% heritability because it remains

unchanged across environments and experiments, whereas the

heritability for envirotypes can be defined as the proportion of

environmental variance that can be repeatedly explained spatio-

temporally. It is similar to ‘‘repeatability’’ and largely ‘‘deter-

mined’’ by mega- and major environmental variables that are

predictable, repeatable, or manageable. Mega-environmental

variables have almost zero variance and can be treated as fixed

effects, whereas major or minor environmental variables may

have non-zero variance and can be treated as fix or random ef-

fects, depending on their heritabilities.

If repeatableGEI patternsare identified, then the target regionmust

be divided into subregions or mega-environments. Breeding and

utilization of mega-environment-specific cultivars will convert the

repeatable GEI into G within mega-environments, thereby

improving heritability (selection reliability) and genetic gain. If no

repeatable GEI is found, then the target region must be treated as

a single mega-environment, and the GEI must be accommodated

by adequate testing (Yan et al., 2022).

Envirotyping has received increasing attention with the establish-

ment of advanced phenomics platforms and facilities, becoming

a routine practice in controlled or managed environments. For

example, the Netherlands Plant Eco-phenotyping Centre con-

sists of six complementary, experimental modules, two of which

were designed for HTP under simulated multi-environment

climates. Shennong National Phenomics Research Facility (Wu-

han, China) was designed to precisely monitor and control light,

temperature, water, soil, insects, and diseases.
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There are additional reasons why envirotyping and its applications

should receive more attention, including the six aspects described

previously (Xu, 2016). Here we discuss only those that affect iGEP.

First, in addition to the overall performance of specific varieties

across environments, breeders care about not only the ranks of

varieties within the environments but also the environmental

effects. Major environmental factors can be identified and used

to classify environments, which generally also contribute to GEI.

Second, improved envirotyping can help better understand

genes, pathways, and networks; crop performance under abiotic

and biotic stresses can be better predicted using predictable

mega-environmental factors. Third, by controlling environmental

variation, environmental profiles can be built, relevant factors can

be dissected into functional components, and EIs can be con-

structed. Fourth, by characterizing and classifying environments

or experimental sites, we can optimize MET sites and determine

target environments or market segments for the release of

improved crop varieties. Fifth, envirotyping and enviromics enable

better understanding of GEI. GEI components can be dissected,

and the effects of crop management on gene expression (agro-

nomic genomics) can be determined. All these five aspects will

contribute to improving prediction accuracy and optimizing

models and parameters in iGEP.

Multidimensional breeding information

In early plant breeding history, breeding data included only one

dimension (phenotype). Although METs and field tests have

collected environmental data in MSEs for many years, this third

dimension (envirotype) has only been used more recently

(Costa-Neto et al., 2021a; Cooper and Messina, 2021). In the

era of smart breeding, a significant proportion of big data will

be collected by tri-typing technologies across time and space
Pipeline Conventional breeding

Breeding design genotype, phenotype, and pedigree information

used to select parental lines and design cross

breeding schemes based on breeding objectiv

Breeding procedure organized, designed, and standardized breedi
procedures can be developed based on breed

practices and the limited information available

Selection based on favorable recombinants; largely focu

major genes; highly efficient for target environ

assisted by direct selection indices

Multi-environmental

trials

site selection with less optimization; accumula

and observation are given relatively high weigh
managed with normal production practices

Varietal release and

commercialization

additional field testing and trials are needed to

determine target regions or market segments

multi-environmental trials

Plant variety protection molecular marker numbers used as a major cr

with a small number of markers; both phenoty

molecular profiles used, with pedigree informa

involved

Table 2. Comparison of conventional and smart breeding pipelines.
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(developmental stages, METs, and years). These multidimen-

sional data, in addition to G-P-E, have become increasingly

important for breeding across various environments and ecolog-

ical conditions.
Challenges in breeding with big data

MSEs have been partitioned into functional components to

enable optimal execution; this starts from new breeding tools/

technologies, moves forward to line development and commer-

cial or product development, and ends with value chain develop-

ment (Eathington et al., 2007). There are significant differences

between conventional and smart breeding pipelines (Table 2). A

typical MSE usually runs at the following scales each year: 2K–

5K populations, 200K–500K segregating lines, 10K–30K

finished lines, 200K–500K test crosses, 20K–50K finished

hybrids, 1–2M nursery rows, and 2–4M yield test plots (David

Butruille, 2006, personal communication). Tomato breeders are

evaluating approximately 35K genes individually and more than

610M cases of gene-to-gene interaction systemically to develop

superior cultivars (Lee, 2020). Continued success in breeding

depends on developing novel algorithmic and computing

system approaches and evaluating these methods in

agricultural settings. For storing, transferring, analyzing, and

sharing data internally, an efficient data management system

must be built and integrated with other internal services.

The big data analytics process comprises three major compo-

nents—data capture, data analysis, and interpretation—that lead

to insights into the underlying biology, optimized genetic models,

and breeding decisions. There is a risk of drowning in the massive
Smart breeding

can be

es and

es

all genotype-phenotype-envirotype big data and

established models can be used to identify the best

crosses and the most appropriate breeding scheme;
crop varieties can be designed at the micro and macro

scales using all available information

ng
ing

highly organized, designed, and standardized breeding
procedures can be developed with assistance from big

data and artificial intelligence through multi-

disciplinary collaborations

sed on

ments;

based on design; focused on both major and minor

genes; highly efficient for both target and nontarget

environments; assisted by both direct and indirect
selection indices (including modeling and prediction)

ted data

t;

site selection optimized based on accumulated multi-

environmental trials and environmental data with future
perspectives; well managed using precision agriculture

with environmental data collected and accumulated

after

targeted market segments for varietal

commercialization are determined efficiently and

precisely using big data, artificial intelligence, and

model prediction

iterion,

pe and

tion

genetic similarity indices constructed using high-

density marker and omics data; molecular profiles

used as criteria along with phenotypes; pedigree and

parental contribution determined and derived based on
marker and omics data or profiles
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amounts of data generated by automated tri-typing systems. The

major challenge lies in data management and synergism across

data collection and analyses (Coppens et al., 2017). Breeding

data have diverse data formats, including raster, vector,

topography, model, table, text document, statistical, map, and

figure formats, largely characterized by their site- and season-

specific collection, source diversity, and generation periodicity.

They are usually difficult to process and analyze using regular

statistics and methodologies (Table 1).

There are five key issues to be considered in future tri-typing

and data collection. First, ontology and protocol systems: all

data collection should follow the same ontology and protocols

tomaximize the capacity for data integration, archiving, and com-

parison. Such systems should be implemented with consistent

funding to support the breeders’ focus on the breeding target,

as shown in maize for long-term selection of protein and oil con-

tents (Moose et al., 2004) and in data collection over years and

METs (Cooper and Messina, 2021). Second, facilities: they

must be able to extend breeders’ hands and senses to reach

more complicated situations, provide standardized and

consistent measurements, and generate uniform data. Third,

throughput: methods for high-throughput data acquisition are

necessary to collect data from a huge number of individuals

within a specific time window automatically and efficiently.

Fourth, precision and accuracy: ‘‘garbage in, garbage

out,’’ data precision, and accuracy are crucial for big data.

Garbage data are not better than nothing and cause trouble in

data mining and utilization. Fifth, individuals versus populations:

data should be acquired in environments comparable with the

field condition. Plant density significantly affects both phenotyp-

ing and envirotyping, owing to GEI. Therefore, phenotyping

protocols established for single plants should be updated for

populations grown at high densities. How these five key issues

are addressed will determine the extent to which the collected

phenotypic data can be used for predictive breeding.
Intelligent integration of G-P-E data

‘‘Point-to-point’’ integrations were the norm until middleware, data

integration platforms, and application programming interfaces

became fashionable. To facilitate more efficient use of data, new

technologies have emerged over time, including data warehouses

(ETL [extract-transform-load]), data mapping (data relationships),

semantic mapping (ontologies), data modeling (integrated data-

bases), and data lakes (raw data storage) (Morgan, 2018).

Data can be integrated in different ways (Lund, 2020): uniform data

access, common data storage (the cloud), application-based

solutions (specialized programs to locate, retrieve, and integrate

data), common user interfaces, and middleware data integration.

Data integration can be categorized into three types. (1) Link

integration begins the query with one data source and then

follows links to related information in other sources. Software

solutions to integrate multiomics data leverage data-mining

algorithms to collate heterogeneous biological information from

across the web into knowledge networks (Marsh et al., 2021). (2)

View integration leaves the information in its source database but

builds an environment around the databases. (3) A data

warehouse or cloud brings all the data together under one ‘‘roof.’’

Cloud-based solutions are very cost-effective, allowing fast, auto-
1672 Molecular Plant 15, 1664–1695, November 7 2022 ª 2022 The Au
mated, and secure data integration (Lund, 2020). Multiple

challenges arise when multiomics datasets are integrated

intelligently. Some are more general to ML analysis, such as the

presence of missing values or class imbalance, and existing

reviews have already covered those subjects (Mirza et al., 2019;

Song et al., 2020). Some are more specific, including the

noisiness and complexity of multiomics datasets.

With each pre-processed dataset, themultiple datasets could sim-

ply be assembled with sample-wise concatenation and used as

input for ML (known as ‘‘early integration’’). There are three vertical

integration approaches (Ritchie et al., 2015): concatenation-based

integration combines datasets before analysis, transformation-

based integration performs mapping or data transformation of

each dataset before analyzing the transformed datasets, and

model-based integration performs analysis separately on each da-

taset before combining the results (Picard et al., 2021). As different

typesofgenomicdataoftenhavevery largedifferences inscale, the

data need to be transformed to a proper scale before integration

(Table 1; Figure 1). On the other hand, prediction models can be

established for each data type bymulti-stage analysis, and individ-

ual models or results can then be integrated (Xu et al., 2020a; Xu,

2020). Deep learning (DL) algorithms can capture nonlinear

patterns and integrate data from different sources (Montesinos-

López et al., 2021a).

Convolution and pooling are two data integration strategies for

combining small datasets into big ones. As almost all ML models

need to work with very large datasets, the first strategy is to

combine relatively small datasets to form a large dataset (López

et al., 2022). As a mathematical operation, convolution merges

two functions (sets of information) to produce a third one as a

modified (filtered) version of one of the original functions. A

pooling operation, such as downsampling or subsampling in ML,

is used in convolutional neural networks (CNNs) to bypass the

need to explicitly define which independent variables (inputs)

should be included or selected for the analysis by optimizing a

complete end-to-end process to map data samples (Wang et al.,

2019c). Maximum pooling and average pooling are the two most

popular pooling operations. The former performs DR and de-

noising,whereas the lattermostly performsDR (López et al., 2022).

Data integration among systems has been traditionally difficult and

expensive owing to the complexity of data formats, data types, and

even theways inwhichdataareorganized.Multiomicsdatasetsare

noisy, sparse, and irregularly collected under diverse conditions

and time points, resulting in heterogeneity, high dimensionality,

and, thus, an ill-defined prediction. For example, multiomics data

are hampered by the problem of a small number of observations

and a large number of independent variables (‘‘large p small n’’)

(López et al., 2022). Therefore, integration can make the datasets

large and comprehensive enough for iGEP. Making multiomics

data findable, available, identifiable, and reusable is crucial for

data reuse and discovery through good data management

(Wilkinson et al., 2016), including integration. Development of

international standards, ontologies, and vocabularies, including

the breeding application programming interface, will ensure inte-

gration and interoperability across multiomics datasets (Selby

et al., 2019). Knowledge networks and information hubs are used

to centralize multiomics data, and research should be extended

to incorporate the growing knowledge base of GEI and
thor.
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environmental data (Xu, 2016; Morais et al., 2019; Marsh et al.,

2021). Cloud and web computing are essential for integrating

data and analysis together (Marx, 2013).

Before data integration, the original data should be optimized by

removing or adding variables (Kuhn and Johnson, 2013). An

independent variable should be removed if it has zero or near-

zero variance, as such a variable has a single unique value or very

few values. For highly correlated or nearly perfectly correlated vari-

ables, only one should remain, as they all measure the same infor-

mation, and suchcollinearity could inflate the parameter estimates.

Models with less correlated variables can minimize unstable

parameter estimates, numerical errors, and degraded prediction

performance. Removing variables also reduces the computational

resources required and may result in a more parsimonious and

interpretable model. On the other hand, variables can be added

by creating dummy variables from nominal or categorical inputs

and a categorical variable through original data transformation

(López et al., 2022).

For optimal information integration, it is recommended to include

a substantial overlap of common entries for the best prediction.

As an example, GP accuracies were evaluated in two indepen-

dent prediction sets in combination with calibration sets.

Including data from all selection cycles in model training yielded

the best results because interactions between calibration and

prediction sets, as well as the effects of different testers and spe-

cific years, were attenuated (Auinger et al., 2021).

Data integration platforms have focused on low-code and no-code

tools that do not require specialized knowledge of query and pro-

gramming languages, data management, data structure, or data

integration (Morgan, 2018). Available data integration tools have

been reviewed by Morgan (2018), and those most relevant to

breeding data include ETL platforms to extract data from a data

source, transform it into a common format, and load it to a target

destination; data cleansing tools to identify, correct, or remove

incomplete, incorrect, inaccurate, or irrelevant parts of the data;

data warehouses to centralize data repositories; metadata

management tools to enable the establishment of policies and

processes that ensure information can be managed across the

organization; data connectors to import or export data or convert

them to another format; and data profiling tools to understand the

data and their potential uses.
AI and robots in plant breeding

Modern breeding for mechanized, engineered, and facility agri-

culture introduces immense challenges. These challenges arise

from increasing data volume, diverse samples, low valid-event

rates, network complexity, heterogeneous data, and the need

for data sharing (Figure 1), thus calling for AI. AI algorithms are

used to create expert systems for prediction or classification

based on input data. AI will have extensive impacts on breeding

information systems. Breeders’ experience and knowledge can

be transferred into future AI-assisted breeding systems, and digi-

talization of breeding experience will promote the transition of

breeding from empirically driven to AI-driven.

The combination of big data andAI has been referred to asboth the

fourth paradigm of science (Hey et al., 2009) and the fourth
Molecula
industrial revolution (Gil et al., 2014; Schwab, 2017). Buried deep

within big data are immense opportunities for future plant

breeding through AI (Figure 2). Plant breeding will be driven by AI

in four ways: (1) AI-assisted breeding systemswill play a significant

role in theoretical study, evaluation, selection, breeding procedure

development, and field management; (2) AI-equipped robots will

interact with all the processes involved in data collection, storage,

analysis, sharing, and utilization, significantly upgrading breeding

information systems; (3) AI systems will benefit from historical

experience and relevant knowledge produced and accumulated

in breeding programs; and (4) breeding systems driven by big

data and AI will have a great capacity for design and prediction

through model simulation and optimization.

Robots equipped with AI have found success in solving scientific

problems. For example, AlphaFold 2, an AI-robot algorithm, signif-

icantly outperformedother teams in a protein-folding contest at the

Critical Assessment of Structure Prediction 14 in 2020, and it

recently predicted the 3D structures of almost all proteins. It follows

that AI technologies automated via robotics could facilitate

breeding and crop production in manyways, including information

capture (observation and identification of breeding-related data),

data analysis (integration of data and empirical breeding informa-

tion to build selection models), and breeding decisions (genotype

selection for starting the next cycle of breeding) (Table 2).

Applying a careful experimental design, using adequate biological

replicates, and capturing as much information as possible about

environmental heterogeneity within and across field sites are

important steps in generating datasets with which to properly

train a model for predictive breeding.
iGEP: CONCEPT

Genomic prediction and its current limitations

Recently, Bernardo (2021) comprehensively reviewed predictive

breeding. The word ‘‘prediction’’ was first used in this context

by Doxtator and Johnson’s ‘‘Predictive breeding,’’ begun in the

1930s, which was initially focused on developing superior

double-cross maize hybrids (Jenkins, 1934). The advent of

recurrent selection in the 1940s led to predictions for the next

cycle of selection. To predict the performance of single-cross hy-

brids, genomic BLUP (GBLUP) was developed in 1994 (Bernardo,

1994). With the development of molecular markers, rapid-cycle

recurrent selection became possible in the 1990s, and multiple

regression was used to predict plant performance, enabling early

selection based on predicted genetic values (Edwards and

Johnson, 1994; Hospital et al., 1997; Eathington et al., 2007).

After a landmark article on genome-wide selection (Meuwissen

et al., 2001), prediction methods shifted from multiple

regression with fixed marker effects to ridge regression and

Bayesian models with random marker effects (Habier et al.,

2011). Since then, GP has been widely used in both animals

and plants (Crossa et al., 2017; Voss-Fels et al., 2019; Xu et al.,

2020a, 2021a; Fu et al., 2022). Using the concept of genomics-

assisted breeding, Varshney et al. (2021) proposed genomic

breeding with the incorporation of GP.

Although molecular marker-based GP has been widely used,

the currently available system has six potential limitations: it is

suitable for highly related germplasms, which have historically
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Prediction method Model Components Data size AI

GP across environments p = g + e + ge g’ = (g1, g2, g3, ., gn) g: 100K to 100M+ not needed

iGEP with envirotypic data p = g + e + ge g’ = (g1, g2, g3, ., gn)

e’ = (e1, e2, e3, ., el)

g: 100K to 100M+

e: 10K to 10M+
preferable

iGEP with multiomic and

envirotypic data

p = G + e + Ge G’ = (g1, g2, g3, ., gn)

e’ = (e1, e2, e3, ., el)

G: 2+gs gj: 100K to 100M+

e: 10K to 10M+
preferable

iGEP with spatiotemporal

multiomic and envirotypic data

p = G + E + GE G’ = (g1, g2, g3, ., gn)

E’ = (e1, e2, e3, ., el)
G: 2+gs gj: 100K to 100M+

E: 2+es ek: 10K to 10M+
required for best efficiency

iGEP for multiple traits P = G + E + GE P’ = (p1, p2, p3, ., pm)
G’ = (g1, g2, g3, ., gn)

E’ = (e1, e2, e3, ., el)

P: 10+ps pi: 2
+

G: 10+gs gj: 100K to 100M+

E: 2+es ek: 10K to 10M+

required for full function

Table 3. Predictive models integrating big data and artificial intelligence for smart breeding.
AI, artificial intelligence; GP, genomic prediction; iGEP, integrated genomic-enviromic prediction; K, thousand; M, million; p, p, and P, single, vector, and

matrix variables for phenotype; g, g, and G, single, vector, and matrix variables for genotype; e, e, and E, single, vector, and matrix variables for envir-

otype. The first fourmodels are proposed for single phenotypes. The single phenotypic variable p becomes pwhenmultiple traits are involved andPwhen

multiple traits are collected spatiotemporally (across multiple environments).

Molecular Plant Smart breeding
been used in predictive breeding (Bernardo, 2021); it is affected

by many external factors; it is environment specific, with

limited incorporation of envirotypic information; traditional

models typically perform a linear regression analysis with clear

assumptions andare unable to capture complexG-P relationships;

it usesonlygenotypicdata largelygeneratedbymolecularmarkers;

and, finally, it optimizes models using limited historical data.

Models using different breeding programs have rarely performed

well (Wallace et al., 2018), and accuracy can drop rapidly, even

beyond half-sib family structures (Beyene et al., 2015). On the

other hand, current GP approaches largely rely on the G-P associ-

ation. Many other important data layers that explain trait variation,

including multiomics information, particularly enviromics, should

be fully incorporated.

As a new strategy for GP, ML has been receiving increased atten-

tion. The most popular ML methods, such as random forest (RF)

and support vector machines (SVMs), are very easy to implement

because few hyperparameters need to be tuned, although more

user intervention is needed to preprocess inputs manually. As a

part of ML, however, DL is more model robust; it performs auto-

matic feature engineering by learning through multilevel transfor-

mations, and it captures complex patterns more powerfully

(Montesinos-López et al., 2021c).
iGEP methods

Accurately predicting and selecting the best lines and hybrids for

specific environments relies on the ability to model complex sys-

tems from a web of G-P-E data. Multiomics data are a prominent

example of such high-dimensional, heterogeneous datasets, and

they have complex multilevel structures, contributing to diffi-

culties in model construction and optimization. GP models

involve several complexities, as model selection depends on

several factors, including trait genetic architecture, marker den-

sity, sample size, linkage disequilibrium size, and GEI. Among

the factors that affect GP, models are the only one that deter-

mines the predictability when a set of training data and breeding

populations are given.

Here, we propose a next-generation prediction strategy, iGEP.

The phenomic data used to upgrade current GP models include
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agronomic traits as well as molecular phenotypes that are

measured at the molecular level, e.g., gene expression with the

transcript abundances of thousands of genes (Jansen and Nap

2001; Brem et al., 2002; Schadt et al., 2003), and the enviromic

data involve cellular, intercellular, and external environmental

factors. Variables used in predictive model construction can be

upgraded from single dimensions (the vectors p, g, e) to

multiple dimensions (the matrices P, G, E) (Table 3).

In the context of predictive breeding, iGEP can be classified

into five categories based on the variables included in the

model (Table 3). First is conventional GEI, i.e., GP across

environments using marker data and the phenotypic data

collected across environments. Conventional GEI is included

to understand the contribution of GEI to the phenotype being

predicted. Second are predictive models with envirotypic

information incorporated. Here, vectors of enviromic data are

included in the model to understand the contribution of each

environmental factor and its interaction with genotype. Third

is iGEP, which uses both multiomics and enviromics data.

Matrices of genomic data and vectors of enviromic data are

included in the model to understand the contribution of

a specific environmental factor and its interaction with

all omics factors. Fourth is iGEP using multiomics and

enviromics data for all relevant environmental factors

collected across time and space. This method uses matrices

of multiomic and spatiotemporal enviromic data in the model

to understand the contribution of all environmental factors

and their interactions with all omics factors to phenotypes

across time and space. Fifth is iGEP for simultaneous

prediction of multiple traits using all G-P-E data collected

across multiple environments.

Genomic prediction across environments

Several examples have demonstrated the potential for

enhancing prediction of yield and other complex traits by

including GEI effects in prediction models (Burgueño et al.,

2012; Jarquı́n et al., 2014; Acosta Pech et al., 2017; Cooper

and Messina, 2021). In wheat, modeling GEI using information

on markers or pedigrees could enhance prediction accuracy

(Burgueño et al., 2012). Using interactions between markers

and environmental covariates to account for GEI, the

prediction accuracy was substantially higher (17%–34%) than
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that ofmodels basedonmain effects only (Jarquı́n et al., 2014). In

maize, using 2724 hybrids evaluated for three traits in 58

environments, genomic models that included the interaction of

general and specific combining ability with environments

increased the prediction accuracy by 12%–22% (Acosta Pech

et al., 2017). More recently, a decentralized durum wheat trial

distributed across the Ethiopian highlands showed that data-

driven decentralized breeding could double the prediction accu-

racy and enhance local adaptation and superior yield

performance (De Sousa et al., 2021). As phenotypic data

collected across environments become increasingly available,

incorporating GEIs into prediction should become a routine

practice.

iGEP with envirotypic data

Identifying and harnessing suitable sets of coordinated genotypic

and envirotypic predictors will provide new opportunities for pre-

dicting the consequences of GEI. Several approaches have been

proposed for incorporating environmental data into GS to improve

prediction (Heslot et al., 2014; Jarquı́n et al., 2014; Cooper et al.,

2016; Li et al., 2018; Millet et al., 2019; Costa-Neto et al., 2021a,

b; Li et al., 2021b). However, the environmental dimension has

been explicitly addressed in very few instances. In an early

attempt, day length and temperature were used as examples to

generate an EI to enable integrated modeling and prediction (Li

et al., 2018; Guo et al., 2020). Three major crops (maize, wheat,

and oat) were used, with 35 212 phenotypic values for flowering

time, plant height, and grain yield across 51 year–location

combinations. Identifying such an EI enabled the GS of complex

traits with an explicit environmental dimension (Li et al., 2021b).

With a quantitative EI established, the observed phenotype

with this EI can be modeled, and phenotypic performance in

new environments can be predicted using historical weather

averages, in-season weather, or forecasted weather data.

Along with this general framework, an analytical package, CERIS-

JGRA, was developed to enhance GP. However, more compli-

cated models should be developed to adapt prediction models to

complex EIs or a complete envirotypic profile including all environ-

mental variables.

Two MET maize datasets were used to investigate new kernel

models involving genomic and nongenomic sources of variation

(Costa-Neto et al., 2021a). A total of 16 environmental factors

were used to create an envirotype covariable matrix, which was

added to five whole-GP models involving environmental

covariables and their interactions. The models were tested

under three prediction scenarios: newly developed hybrids,

sparse MET conditions, and new environments. Gaussian

kernels and deep kernels are more efficient at translating

model complexity into accuracy and are more suitable for

including dominance and reaction-norm effects (Costa-Neto

et al., 2021a). As a toolkit, EnvRtype was developed to

offer remote sensing tools for collecting and processing

ecophysiological variables from raw environmental data;

environmental characterization by envirotyping and profiling

environmental quality; and identification of enviromic similarity

for an enviromic-based kernel. Envirotyping parameters were

fine-tuned for each plant species and target environment by liter-

ature mining (Costa-Neto et al., 2021b). EnvRtype, CERIS-JGRA,

and other similar software packages represent cost-effective en-

virotyping pipelines capable of utilizing high-quality enviromic

data for a diverse GP set.
Molecula
iGEP can be improved by incorporating diverse but well-managed

environments. Diverse environments consist of both predictable

and unpredictable environmental variables, whereas well-

managed environments can form near-isogenic lines (NIEs) that

significantly differ in only one major, predictable variable (Xu,

2016). Comparison of diverse environments and NIEs provides

opportunities for detailed dissection of phenotypic differences

caused by complex environmental variation. A single set of NIEs

can be used to characterize the contribution of each major

environmental variable to specific phenotypic variations. Such

analysis can be used to improve model construction in iGEP. The

same applies for the following discussion involving multiomics

data.

iGEP with multiomics and enviromics data

Multiomics data enable the generation of a global profile of a plant,

including genomic sequence (genomics), DNAmethylation (epige-

nomics), gene expression (transcriptomics), protein abundance

(proteomics), gene translation (translatomics), metabolic flux (me-

tabolomics), genotypic and environmental contributions to pheno-

typic variation (phenomics and enviromics), and metadata

(Harfouche et al., 2019; Wu et al., 2021). Some sources of omics

data have much more complex data structures than marker

data, and multiomics data, being multidimensional, already

complicate model construction and fitness. High-level omics

data, such as gene expression or metabolite concentrations, can

capture additive and epistatic signals from multiple genetic loci

owing to their molecular proximity to macro-scale phenotypes.

For example, transcriptomic andmetabolomic data can be treated

as an intermediate phenotype, endophenotype, or something

close to a genotype to best model all the data. Predictive models

developed with data from multiomics layers are expected to pro-

vide better prediction than the use of molecular markers alone.

Integration of multiomics data into GS models improves

prediction accuracy by efficiently capturing minor and nonad-

ditive effects (Westhues et al., 2017; Schrag et al., 2018; Xu

et al., 2020a). In two early reports, using a combination

of parental genetic and metabolic markers significantly

improved predictions for biomass heterosis in Arabidopsis

(Gӓrtner et al., 2009) but not for general combining ability in

maize (Riedelsheimer et al., 2012). Later studies using

genomic, transcriptomic, and metabolic data from larger

datasets improved predictions of complex traits in maize

(Guo et al., 2016; Westhues et al., 2017; Schrag et al., 2018;

Hu et al., 2019; Yang et al., 2022) and rice (Wang

et al., 2019b; Xu et al., 2021b). To improve predictions,

multilayered LASSO was developed to enable learning of

three layers of genetic features (genome, transcriptome,

and metabolome) (Hu et al., 2019). Incorporation of higher-

order gene interactions significantly improved the predictability

of rice yield from 0.159 (GP alone) to 0.245 (multilayered

LASSO).

Another major category of genotypic data ismolecular interaction

networks. The whole set of molecular interactions that occur

within a particular cell is defined as the ‘‘interactome.’’ An inte-

grated strategy proposed for combining the interactome with

ML involves mining information hidden in big data to identify

the genetic models or networks (Wu et al., 2021). The strategy

includes seven steps, three of which are related to training

and prediction: model training and construction using basic
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algorithms (linear regression, logistic regression, naive Bayes,

SVM, and decision tree), evaluation to find the best models,

and novel gene prediction. As a new dimension of omics data,

interaction networks can be incorporated into iGEP to improve

predictive breeding.

iGEP models need to include higher-dimensional profiles to

accommodate enviromics information collected across time

and space. For example, megaGEIs can be revealed with tempo-

ral, spatial, and climatype data using models such as:

Space3 Time3Genome3Mega-genome3Metagenome. Pre-

diction with such complicated variables will require more AI sup-

port and higher computational capacity.

iGEP for multiple traits

The single phenotypic variable (p) becomes a single-dimension

vector (p) when multiple traits are considered and a multidi-

mension matrix (P) when multiple traits are observed across

multiple environments (Table 3). Correlation and similarity

among multiple traits should be used to develop iGEP

models. Recent progress in multi-trait GP enhances accuracy

in multi-year wheat breeding trials (Montesinos-López et al.,

2021b). A multi-trait GP based on a multivariate linear mixed-

effect model could efficiently leverage thousands of traits at

once (Runcie et al., 2021). Using maize as an example, a

multi-trait predictive breeding strategy was developed (Yang

et al., 2022). The similarity between genomic predicted

and observed values could be trained using agronomic,

transcriptomic, and metabolic traits and then used to predict

multi-trait similarity among the target traits of predicted ob-

jects (inbreds or hybrids).

When multiple traits are included as response variables, the

model becomes a multi-trait GBLUP, which can be developed

using GBLUP and Bayesian methods (as reviewed by

McGowan et al., 2022). A multi-trait GS model can be

expanded to a multi-trait and multi-environment (MTME)

Bayesian model or realized through nonlinear frameworks

such as ML. Multi-trait GBLUP is expected to improve predic-

tion accuracy by enabling information to be borrowed among

correlated traits (Chen et al., 2023). There is evidence that

the larger the correlation between traits, the better

the prediction performance of multi-trait analysis (Jia

and Jannink, 2012; Jiang et al., 2015). Incorporation of

environmental variables into iGEP must take into account the

correlations among multi-environment variables and the

contribution of each factor to total environmental variance

and the predictability of environmental variables.
Challenges in iGEP

Feature selection and DR

Big data in predictive breeding are characterized by high dimen-

sionality, which refers to both the sample size and the number of

variables and structures (Xu, 2020). High dimensionality poses

challenges to computation and analysis, even with AI-assisted

data analytics. As the number of features or dimensions increases,

the amount of data required for accurate generalization increases

exponentially, a phenomenonknownas the curse ofdimensionality

(Bellman, 1961). Traditional algorithmscanbecomeunstablewith a

large number of variables, which also contributes to false positives

owing to multiplicity of statistical testing. Because of the large
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number of genetic variants, it is not generally feasible to use the

data matrices directly in standard statistical analyses. To avoid

the curse of dimensionality, feature selection (FS) and DR

methods are used (Figure 2).

FS yields a subset of features from the original set that best

represent the data, whereas DR transforms the features into a

lower dimension. There are a large number of FS methods

available, such as clustering, linear transformations (principal

component analysis [PCA], singular value decomposition), spec-

tral transformations, and convolutions of kernels (Gabur et al.,

2022). In general, unsupervised FS methods are less prone to

overfitting (Guyon and Elissee, 2003) and have the ability to

improve predictions. The combined prediction models and FS

methods have been compared for microarray datasets (Bolón-

Canedo et al., 2014; Bommert et al., 2020), text analysis

(Forman, 2003), and image interpretation (Dy et al., 2003). In

soybean, a recursive feature elimination approach was used to

reduce the dimensionality of hyperspectral reflectance data,

resulting in considerably decreased computation time and

enhanced prediction accuracy, especially for nonlinear learners

(Yoosefzadeh-Najafabadi et al., 2021).

High dimensionality greatly challenges traditional statistical theory

(Fan and Li, 2006). Owing to the size and complexity involved, the

associated mathematical theory can differ from the traditional

approach. Methods such as PCA may therefore not be feasible,

and more efficient DR methods such as random projection

based on the Johnson–Lindenstrauss Lemma (Johnson and

Lindenstrauss, 1984) should be used. FS methods were included

in ML, along with nonlinear DR and random selection using 80%

of the input dataset, and prediction accuracies were evaluated

with the remaining 20%. Features obtained from FS filter

methodswere combinedwith rrBLUP, LASSO regression, gradient

boosting machine (GBM), ANN, and RF predictors. Using a spring

Brassica napus population composed of 950 F1 hybrids (for seed

and oil yields) and a diversity collection of 191 wheat cultivars (for

grain yield traits), ML methods outperformed current approaches,

increased prediction accuracy, drastically decreased computation

time, and improved detection of important alleles involved in qual-

itative or quantitative traits (Gabur et al., 2022). Therefore, FS

methods and modern prediction models can be combined to

effectively exploit cost-efficient genotyping data and improve pre-

diction accuracies.

Aside fromDR,variousotherapproachescanbeused to reduce the

number of variables to make big data more manageable. For

example, a large number of SNPs can be transferred into a signifi-

cantly smaller number ofmarker bins (An et al., 2020). Alternatively,

a subset of markers can be extracted by biological filtering (Kim

et al., 2020). For a large number of environments, environment-

related variables can be compressed into one variable by coding

environmental effects to identify complex interactions (Li et al.,

2022b). It is also possible to pinpoint the major environmental

factors that canbeused inDR.Forwell-establishedgenenetworks,

key genes that regulate a network can be identified to form a

subset of multiomics data. In addition, unique plant materials,

such as NILs, and well-managed environments, such as NIEs,

can be used to develop strategies for reducing dimensions and

variables. Dimensions can also be reduced by using correlated

high-heritability traits or high-heritability secondary traits to replace
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low-heritability traits and by using an index constructed formultiple

traits.

Model overfitting and underfitting

As the complexity of theMLmodel increases, the bias between the

expected prediction and the true observed values is reduced and

the error variance (change in the estimatewith different training da-

tasets) increases (López et al., 2022). In this case, twomajor issues

occur when training ML models. Overfitting occurs when the

developed model is too unique to the training set and thus loses

the ability to generalize. The chances of overfitting increase with

higher dimensionality of the training data. In ML, overfitting can

cause some serious problems, including false relationships

caused by noise, a complicated ML model for the availability of

data, and unpredictable or poorly predicted models (López et al.,

2022). If the ML fails, some approaches can be used, including

those proposed by Shalev-Shwartz and Ben-David (2014):

(1) increase the training sample size; (2) modify the hypothesis

and change the parameters used; (3) change and optimize

the feature representation, e.g., by FS and DR; and (4) change

the ML algorithm. ANN is a nonparametric ML model that is

very flexible and is subject to overfitting of training data.

This problem can be addressed by dropping out (setting to

zero) the weights of a certain percentage of hidden units,

while extreme gradient boosting (XGBoost) controls overfitting by

using a more regularized model formalization (Chen and Guestrin,

2016).

Underfitting occurs when only a few predictors are included in the

MLmodel, which then poorly represents the complete structure of

the datapattern. This problemalso ariseswhen the trainingdataset

is too small to represent the population (López et al., 2022).

Increasing and accumulating training data are critical for

prediction accuracy and can minimize overfitting and underfitting

issues. A balance between overfitting and underfitting must be

maintained during model design. If the training dataset is not

large enough, the trained model is likely to accurately predict the

targets in the training dataset but fail when used to generate

predictions.

Modeling with data complexity

Modeling iGEP faces increasing challenges of data complexity.

First, metabolites, transcripts, near-infrared wavelengths, or hy-

perspectral wavelengths can serve as agronomic traits or fea-

tures in place of SNP markers in GBLUP to estimate relatedness

(Bernardo, 2021), complicating data origins, structures, and

formats. Second, enviromic data increasingly change with

management practices, such as application of growth

regulators, water, and fertilizers to the target environment. It is

important that models are capable of employing enviromic data

to predict which practices are optimal for breeding objectives.

Third, not every sample is perfectly clean. Interaction network

data, in particular, commonly include incomplete, missing, or

unbalanced data. Such imperfections can be improved with

the accumulation of complementary data that have similar

patterns.

For iGEP, strategies need to be developed for modeling situa-

tions with complicated, big, and changing datasets. Alternatively,

a subset of samples can be used to predict the remaining sam-

ples using the leverage effect (to generate a big return by

predicting with a small subset of samples for training). For

example, two sets of parental lines (with N1 and N2 parents,
Molecula
respectively) can be used to produce N1 3 N2 hybrids. Some

hybrids can then be selected to train a model to predict the

rest. With the accumulation of more populations, the best training

population can be developed from the large pool. A GS4.0

breeding program using the leverage effect was recently pro-

posed to combine doubled haploid (DH) breeding with GS to fit

various breeding schemes in maize (Fu et al., 2022).

Extending the use of omics and systems biology approaches is

necessary to understand complex biological processes and their

interactions with the environment (i.e., GEIs) through the integra-

tion of multiple datasets at the level of a defined system

(Pazhamala et al., 2021). Notably, these components of data

complexity are under the influence of environmental changes

(Figure 2). Using a comprehensive map of rice QTNs, a genome

navigation system, RiceNavi, has been developed for QTN

pyramiding and breeding route optimization (Wei et al., 2021).

However, because of the limited information available on

potential genetic interactions, outcomes cannot be precisely

predicted for pyramiding QTNs that underlie the same trait.

Therefore, a better understanding of genetic networks for the

target traits, such as QTN-QTN and QTN-E interactions, will

improve the precision.
iGEP: IMPLEMENTATION

AI in iGEP

In traditional statistics, genotypic values can be predicted by

linear mixed models (GBLUP, rrBLUP), penalized regressions

(ridge, Lasso), and Bayesian methods (A, B, Cp, R) (reviewed

by De los Campos et al., 2013). AI-assisted GP involves ML

techniques, including kernel methods, SVM, RF, and all kinds of

modern machine and deep learners. The philosophy behind the

techniques includes bias-variance trade-offs, training and test

sets, cross validation, matrices, penalties, priors, kernels, trees,

and deep learners (forward in López et al., 2022). Integrated AI

models enable the analysis of an organism in a dynamic

multiomic fashion. The development of more sophisticated AI

algorithms, such as iterative RF (iRF), will enable the creation of

new integrated discovery spaces (Harfouche et al., 2019). AI,

coupled with high-resolution, high-throughput, and field-scale

phenotyping and envirotyping technologies, will serve as a key

tool for understanding GEI and unlocking greater potential for

iGEP.

AI: Models

The predictive models summarized in Table 3 can be

implemented by developing specific statistical models for each

case and by integrating G-P-E data with AI. As AI-based predic-

tions, ML classifiers fall into three primary categories. (1) Super-

vised learning uses labeled datasets (genotypes and phenotypes)

to train algorithms. When the labeled datasets are fed into the

model, it adjusts its weights until themodel has been fitted appro-

priately. (2) Unsupervised learning analyzes and clusters unla-

beled (for example, unphenotyped) datasets to discover hidden

patterns. (3) As a happy medium between these approaches,

semi-supervised learning uses a smaller labeled dataset to guide

classification and FS from a larger, unlabeled dataset. In iGEP,

some multiomics data may be suitable for modeling by super-

vised learning and others by un- or semi-supervised learning,

by which, for example, environmental variables can be classified.
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Envirotypic data are probably more suitable for semi-supervised

learning models. Some envirotypic data can be collected for indi-

vidual genotypes at the scale of experimental plots, whereas

others can be collected only for the training and testing popula-

tions as a whole at the scale of the experimental station.

Many ML models are constructed to incorporate fixed effects,

whereas others use random effects. As an extension of regres-

sion models, mixed-effects models allow the incorporation of

random effects (López et al., 2022). Traditional prediction

models consider environmental effects as a random effect,

whereas other models consider them as fixed effects. Major or

predictable environmental variables can be considered fixed

effects, and unpredictable or minor environmental variables can

be considered either fixed or random effects, depending on

which kind of model is used.

ML models are commonly classified based on parameter proper-

ties (López et al., 2022). In parametric models, all the predictors

take predetermined forms with the response. Linear, generalized

linear, and nonlinear models are examples. In nonparametric

models, the predictors are constructed according to information

derived from the data rather than being predetermined with the

response. Kernel regression and smoothing spline are two

common ML models. In general, nonparametric ML models are

very flexible and are better at fitting the data, particularly some

phenotypic and enviromic data. In semiparametric models, one

portion of the predictors does not take predetermined forms,

whereas the other portion does.

In ML, a ‘‘kernel’’ usually refers to the kernel trick, a method of us-

ing a linear classifier to solve a nonlinear problem so that the orig-

inal nonlinear observations can be mapped into a higher-dimen-

sional space where they become separable (López et al., 2022).

The kernel trick enables nonlinear versions of any linear

algorithms to be built by replacing their independent variables

(predictors) with a kernel function, giving them greater

advantages, particularly for iGEP. Among the 11 advantages

(López et al., 2022), 6 are most relevant to the development of

efficient iGEP models: (1) interpretation as scalar products in

high-dimensional spaces; (2) complexity controllable through

regularization; (3) integration with classical methods for gene pri-

oritization, prediction, and data integration; (4) ability to enable

further improvements in the scalability of conventional ML

methods and their versatility for working with heterogeneous vari-

ables; (5) flexibility and elegance for use in spatial analysis of clas-

sification problems; and (6) great promise for dealing with very

large multidimensional datasets.

Different types of predictors can also be combined as in kernel

methods, where different types of input variables serve to define

multiple kernels, which translate to (transformed) GGI similarity

matrices that structure genotypic random effects. For example,

two random genotypic effects may be defined. The first one can

be structured with an SNP-based relationship matrix and the

second by a metabolite-based relationship matrix. Another

example consists of adding a dominance kernel to a mixed

model that already contains a kernel for the additive effects.

To include epistatic effects of all orders in addition to additive

effects, reproducing kernel Hilbert space (RKHP) models can

be used.
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In addition to mixed models and Bayesian methods, many ML

models are powerful for capturing complex nonlinear patterns

and have thus been explored for GP (Montesinos-López

et al., 2022); for example, DL is used for training networks with

multiple hidden layers, such as deep neural networks (DNNs).

As ‘‘semi-parametric inference models,’’ DL generalizes ANNs

by stacking multiple processing hidden layers, each consisting

of many neurons. The most popular topologies in DL are

feedforward networks, recurrent neural networks, and CNNs

(Montesinos-López et al., 2021a). DL approaches can be

extended to any trait of interest for breeding with available

high-resolution phenomics and enviromics imaging data.

Given a set of multidimensional data structures, no currently

available AI methods can accurately identify combinatorial pat-

terns within and across those structures. The most appropriate

class of algorithm for fixing this problem is likely to be a DL

approach, such as CNN, or a decision-tree-based approach,

such as iRF (Ma et al., 2018; Harfouche et al., 2019; Abdollahi-

Arpanahi et al., 2020; Yan et al., 2021b). The first step in the

progression toward iGEP is to introduce AI algorithms that can

not only be incorporated into predictive models but also used

to expose the underlying rules that inform these predictions,

offering meaningful insights for breeding.

To quantify how close the predicted values produced by an ML

model are to the true values, a loss function is developed to mea-

sure the quality of themodel output by computing a distance score

between the observed and predicted values (Chollet and Allaire,

2017). A similar concept in ML is explainability, indicating that

what happens in the model can be explained from input to

output. Interpretable ML extracts associations through the

correlations between features and outcomes (Azodi et al., 2020).

Explainability for G2P prediction is relatively new, and new DL

algorithms may have enhanced interpretability (Montesinos-

López et al., 2021a).

AI: Prediction

Although it is not possiblewithmostMLmethods, DLmodelsmore

efficiently incorporate large numbers of omics and G-P-E data in

the same models, including the model types listed in Table 3,

by: (1) naturally capturing nonadditive effects and complex

relationships and interactions; (2) efficiently handling large data

and raw data without any preprocessing; (3) allowing training

models with many hidden layers and capturing very complex

linear and nonlinear patterns involving many types of inputs, such

as images; (4) designing specific topologies (DNNs) to deal with

any type of data; and (5) significantly reducing the number of

parameters by allowing parameter sharing and performing data

compression (using the pooling operation) (Montesinos-López

et al., 2021a).

ML methods more easily capture complex relationships for

iGEP. Like nonlinear methods, ML architectures can also include

multimodal data and data types that are not suited to simple

tabular formats. For example, RF can capture patterns in high-

dimensional data to deliver accurate predictions and can also

take into account nonadditive effects (Heslot et al., 2012). It

demonstrated superior performance compared with linear

models such as Bayesian LASSO (Ornella et al., 2014) and rr-

BLUP, depending on the genetic architecture of the predicted

trait (Spindel et al., 2015). Other ML models that have shown
thor.
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potential for prediction include CNNs and feed-forward DNNs

that can outperform linear methods (Ma et al., 2018; Sandhu

et al., 2020). Multi-trait DL models can help us understand the

relationships between related traits for improved prediction

(Montesinos-López et al., 2018), and ensemble models are

powerful by combining multiple ML methods that may produce

weaker predictions by themselves (Jubair and Domaratzki,

2019; Banerjee et al., 2020). DL is efficient for extracting

representative features from large datasets and has

the capacity to account for feature interaction effects in

multidimensional G-P-E datasets.

Including multidimensional datasets increases the complexity of

analysis exponentially, requiringalgorithms that are able touncover

relationships between the data types and the target trait (Danilevicz

et al., 2022). ML methods can help improve iGEP, as they enable

computers to learn patterns that could be used for analysis,

interpretation, prediction, and decision-making without being

explicitly programmed. ML-based iGEP has the potential to trans-

formmethods for plant breeding owing to the four factors summa-

rized by López et al. (2022): (1) the massive amounts of data being

generated in breeding programs are now available for training ML

models; (2) new technologies, such as sensors, satellite

technology, and robotics, allow scientists to generate not only

genomic data but also phenotypic and envirotypic data that can

be used in the modeling process to increase performance; (3)

increased computational power now allows complex ML models

with larger datasets to be implemented in less time; and (4) user-

friendlyMLsoftwarehasbecomeavailable for implementingagreat

variety of ML models.

Multimodal DL models are composed of multiple models, each

trained using a single input type (e.g., rainfall, soil measurements,

genetic data, hyperspectral imagery), or a single model trained

on concatenated multimodal data. The different modalities

enrich the available features for model learning, contributing to

an improved final prediction (Danilevicz et al., 2022). Use of DL

in iGEP is attributed to its more powerful automatic feature

extraction, greater data representation capability for dealing with

high dimensionality, and ability to capture complex patterns

(Montesinos-López et al., 2021c). It can be expected that DL

methods will outperform conventional ML methods for iGEP, with

progress in the following fields: increasing numbers of large

datasets available; more computer resources available for tuning

of large grids of hyperparameter combinations; spatiotemporal

multiomics available as inputs and preprocessed using

nonlinear models to retain complex patterns; exploration and

implementation of transfer learning and reinforcement learning;

exploration of deep generative models (generative adversarial

networks and variational auto-encoder methods) to generate

new inputs; increased expertise dedicated to model calibration;

increasing data sharing and open-source breeding; and develop-

ment of more user-friendly software.

AI: Applications

The incorporation of DL in breeding pipelines is in progress and

has been used for predicting parental combinations in hybrid

breeding programs (Khaki et al., 2020), modeling and predicting

quantitative traits (Sadeghi-Tehran et al., 2019), genetic

diversity and classification (Yang et al., 2019a), and GS

(Montesinos-López et al., 2021b). However, prediction

methods, including those based on ML, have difficulty carrying
Molecula
their experiences from one case to another. Transfer learning in

this regard should focus on storing knowledge gained when

training a particular prediction algorithm and then using this

stored knowledge to solve another related problem (López

et al., 2022). The transfer can be based on, for instance,

feature, model, and relation (Niu et al., 2020). Transfer learning

provides an effective solution for the large volume of high-

quality labeled data and considerable computational resources

required to train a large ML/DL model (Yan and Wang, 2022)

and has thus been successfully applied to cross-species predic-

tion and plant phenotyping (Moore et al., 2020; Nabwire et al.,

2021). Large-scale omics datasets have been generated and an-

notated for only a very limited number of model plants, such as

Arabidopsis, rice, and maize, and it is impractical to produce

well-annotated training data for all nonmodel species (Yan and

Wang, 2022). One possible solution is to use transfer learning

to achieve cross-species prediction by considering conserved

gene functions and pathways between evolutionarily related

species (Cheng et al., 2021).

Nonlinear learners (GBM, ANN, and RF) outperformed linear

learners (rrBLUP and LASSO) on average when relevant features

were selected in prediction across training sets (Gabur et al.,

2022). The prediction of hybrid grain yield in maize was better

with a 20 hidden multilayer perceptron (MLP) model than with

classical linear models (Khaki and Wang, 2019). In another study

with datasets from yeast, wheat, and rice, six ML methods

(elastic net, rrBLUP, LASSO regression, RF, GBM, and SVR) out-

performed two classical statistical methods (Grinberg et al.,

2019). In a comparison of 23 independent studies, nonlinear

models outperformed linear ones in 47% of all studies that

included GEI and in 56% of studies that ignored GEI

(Montesinos-López et al., 2021a). In wheat, four ML methods,

including SVR, kernel ridge regression, RF, and AdaBoost.R2,

significantly outperformed GBLUP, single-step GBLUP, and

BayesHE (Wang et al., 2022b); improved prediction accuracies

were reported for neural networks (Pérez-Rodrı́guez et al., 2012;

Ma et al., 2018) and kernel-based models (RKHS) (Pérez-

Rodrı́guez et al., 2012); and RF and MLP were the best-

performing ML models for prediction of spectral data.

In general, ML models outperformed four explored Bayesian

models and required less computational time (Sandhu et al.,

2021). In white wheat, multi-trait ML models performed better

than GBLUP and Bayes B for cross-location predictions, but their

advantages diminished when GEI was included (Sandhu et al.,

2022a). For soybean yield, an RF algorithm had the highest

performance among all individual algorithms tested, including

MLP and SVM (Yoosefzadeh-Najafabadi et al., 2021).

As an ML technique for regression and classification, GBM uses

the assembly of multiple weak learners to establish a strong

model; thus, its prediction ability is significantly better than that

of single models (Che et al., 2011). XGBoost, one of the

implementations of GBM, outperforms DL in some tabular data

problems (Zamani Joharestani et al., 2019). In three out of four

wheat datasets, GBM outperformed a Bayesian GBLUP model

(Montesinos-López et al., 2022). With a large dataset of inbred

and hybrid maize lines, LightGBM exhibited superior perfor-

mance in terms of prediction precision, model stability, and

computing efficiency (Yan et al., 2021a). With data collected
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from multiple years (2014–2017) across the US and Canada,

including environmental predictors, two GBM methods

(XGBoost and LightGBM) improved prediction accuracy for grain

yield of new genotypes by up to 20% compared with models of

linear random effects (Westhues et al., 2021). In soybean,

XGBoost or RF outperformed DL models in 13 out of 14 sets of

predictions (Gill et al., 2022). Results from both cattle and

plants showed that GBM outperformed RF, ANN, and CNN (Ma

et al., 2018; Azodi et al., 2019; Abdollahi-Arpanahi et al., 2020).

In an extensive study with 6 linear and 6 nonlinear algorithms

evaluated with data on 18 traits across 6 plant species, no

overall winner was found (Azodi et al., 2019). However, the

prediction using a combination of multiple ML methods did

outperform that using conventional linear methods.

Using two training populations phenotyped in multiple years and

genotyped with 40 368 markers, 17 GSmodels for complex traits

were compared. Only a few significant differences were found

between models, with SVMs reaching the highest accuracy of

0.56. The parametric models showed consistently moderate ac-

curacy, with little advantage over nonparametric models within

individual years, but the nonparametric models had slightly

increased accuracy when combining years (Merrick and Carter,

2021). Using one simulated animal breeding dataset and three

empirical maize breeding datasets from a commercial breeding

program, several groups of supervised ML methods, including

regularized regression and deep, ensemble, and instance-

based learning algorithms, were compared (Lourenço et al.,

2022). All the methods showed reasonably high predictive

performance, but their relative predictive performance was both

data and trait dependent, complicating and precluding omnibus

comparative evaluations of the prediction methods and thus

ruling out selection of one procedure for routine use.

Potential challenges for deploying ML for prediction include: (1)

developing and implementing consistent protocols, (2) reducing

dataset dimensionality, (3) reducing class representation imbal-

ance, and (4) accounting for environmental variationsbetweencon-

ditions for plant growth in the training and deployment datasets

(Danilevicz et al., 2022). The use of multimodal models and other

DL architectures, such as recurrent neural networks and graph

neural networks, remains largely unexplored (Danilevicz et al.,

2022). It is important to note that when the dataset is

considerably large, it is better to randomly split it into three parts

for training, validation (or tuning), and testing (López et al., 2022).

With more and more accumulated G-P-E data, cross-validation

andmodel optimizationcanbeperformedmoreefficiently for iGEP.
Spatiotemporal models in iGEP

When spatiotemporal multiomics data are incorporated into iGEP,

the number of features (dimensions) grows, the amount of data

required to generalize accurately grows exponentially, and it be-

comes difficult to generalize the model. Therefore, more training

data are required. As enviromics data have been largely excluded

from previous prediction models, our discussion will focus on

how we should take envirotyping and environmental variables

into account in our future predictions. Including environmental vari-

ables as the third key dimension in prediction, as shown in Table 3,

significantly increases dimensionality, as these variables can be

collected spatiotemporally. It complicates prediction models
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owing to many unpredictable contributors, such as climate

change, and it introduces multidimensional interactions that must

be addressed in the prediction.

Spatiotemporal omics

The omics data generated during the past three decades largely

lack temporal and spatial information. There is an urgent need to

link space and time using integrative and scalable G-P-E data to

betterunderstandplantphenotypesandassociatedmetabolicpro-

cesses (Munné-Bosch, 2022). Collecting spatiotemporal omics

data has become increasingly important, and more multiomics

data have begun to appear. For example, stereo-seq combines

DNA nanoball-patterned arrays and tissue RNA capture to achieve

large field-of-view spatial transcriptomics at a cellular resolution,

enabling the dissection of spatial cell-type heterogeneity in mouse

embryonic tissues (Chen et al., 2022a). As a specialized form of

DNNs, CNNs can be used to analyze input data that contain

some form of spatial structure (Goodfellow et al., 2016).

Spatial mining uses data related to experimental sites, locations,

and geography to extract spatial relationships and measure-

ments that are not explicitly stored in spatiotemporal databases.

Temporal mining uses large quantities of implicit or explicit tem-

poral data to extract information and temporal relationships, such

as whether temporal data follow cyclic, random, or annual/sea-

sonal variations, etc. In plants, it usually involves omics data

collected across growth and developmental stages and across

crop seasons and years.

Spatiotemporal models

Crop growth models and ML methods can be employed to inte-

grate large vectors of primary environmental covariates intomean-

ingful environmental characterizations (Resende et al., 2021;

Diepenbrock et al., 2022). By scanning for the time window that

gives the best prediction of mean environmental performance,

useful temporal environmental variants can be identified (Li et al.,

2022a). By way of analogy, these approaches have been called

enviromic prediction or envirome-wide association studies

(Piepho, 2022).

Spatiotemporal environmental variables can be dissected into

the major variables collected from predictive mega- or macro-

environments and minor ones collected from less- or unpredic-

tive micro-environments. Including spatiotemporal envirotypic

data as fixed effects can improve the fitness of the model and

reduce the noise caused by treating predictive environmental

factors as random effects, as the phenotype can be better pre-

dicted. As an example, for modeling spatiotemporal environ-

mental variables, a half-diallel maize experiment with 35 families

and 2367 hybrids was conducted at 17 locations in the US and 6

locations in managed-stress environments. Crop growth models

linked to whole-genome prediction offered a predictive accuracy

advantage compared with BayesA (r = 0.43 versus r = 0.27)

(Diepenbrock et al., 2022).

iRF is designed to model across the multiple polytopic space and

may provide one of the first tractable AI solutions for systems

biology and an ML algorithm for iGEP. For example, iRF

would be able to use spatiotemporal G-P-E data to predict the

phenomic layer and identify sets of genes and environmental

factors that affect each of the phenotypes and their combinations

(Harfouche et al., 2019). In parallel, spatiotemporal microclimate

data can be repeatedly collected with ground-based sensor
thor.
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networks and used as a reference on which data analysis pipe-

lines can be developed. AI-enabled iGEP algorithms can then

be used to evaluate breeding decisions and predict which variety

will show the best performance in field testing (Harfouche

et al., 2019) or under specific environments characterized by

envirotyping.
EI in predictive modeling

Using detailed environmental data arranged in a quantitative

descriptor, such as a covariate matrix, analyses can be performed

to dissect the GEI, model genotype-specific sensitivity to critical

environmental factors, dissect QTL3E interaction components,

incorporate environmental data to model the GEI reaction-norm,

profile the environmental gradient in an experimental network,

and generate environmental relationship matrices for prediction

(Costa-Neto et al., 2021b). We have three options for handling

GEI in iGEP: reducing or eliminating GEI, optimizing iGEP using

GEI, and optimizing GEI and METs using environmental data. In

general, environmental data are collected under specific

environmental conditions. Environmental similarity is largely

determined by mega and major environmental variables and will,

in turn, determine the similarities and patterns of GEI and the

accuracy of iGEP.

EI: Definition and general considerations

The environmental mean (tj) was used by Li et al. (2021b) as an EI

(regressor variable). Thus, the regression for the index can be

written as tj = c0 + c1xj, where xj is the environmental variant for

the jth environment (Piepho, 2022). One of the prediction

methods for multiple traits or multiple environments is to

construct a selection index as in quantitative genetics. An EI

can be treated as a new trait for performance prediction and

heritability estimation. The EI for a single environmental variant

can be extended to comprise several environmental variants.

The regression model was further extended to comprise several

EIs, each predicted using a linear combination of several

environmental variants (Piepho, 2022), as envirotypes can be

dissected into components, as is done for genotypes, and then

used to construct EIs.

When an envirotypic item is included explicitly to model iGEP, its

mean is no longer zero. AlthoughMLprovides a catalog of different

models and algorithms from which we try to find the one that best

fits the G-P-E data, there is no universally best model, and a set

of assumptions that works well in one domain may work poorly in

another (Wolpert, 1996). Therefore, when envirotypic data are

incorporated into iGEP, different models, algorithms, and sets of

hyperparameters should be tested for each specific dataset so

that the best model and prediction can be found. Multivariate

models, such as PCA and modern approaches from AI, will likely

allow better definition of enviromic variables for improved EI.

To identify EIs, the Critical Environmental Regressor through

Informed Search algorithm was implemented by examining

four environmental parameters (photoperiod, temperature, photo-

thermal time, and photothermal ratio) and by genotyping maize,

wheat, andoat. Theaverage valueof theenvironmental parameters

was calculated for the window from the ith to the jth day after

planting. The parameter–window combination with the strongest

correlation was then chosen as the EI, enabling GS of complex

traits with an explicit environmental dimension (Li et al., 2021b).
Molecula
EI: Model-related methods

Mixedmodelshavebeengeneralized forMTMEbydefiningastruc-

ture for the random G3T and GEI effects (forward in López et al.,

2022). For phenotypic traits or environments, unstructured or

factor analytic variance-covariance matrices can be chosen.

When explicit environmental characterizations are available, rela-

tionships between environments can also be defined based on

environmental similarities (Jarquı́n et al., 2014). Therefore,

prediction models for EIs can be built by using the environmental

similarities and various relationship matrices derived from all

kinds of combinations of G-P-E and their interactions. Important

environmental variables can be measured to provide suitable

environmental predictors for envirotyping and to enhance

prediction (Cooper et al., 2014a, b; Jarquı́n et al., 2014; Messina

et al., 2018; Voss-Fels et al., 2019; Costa-Neto et al.,

2021b; Resende et al., 2021). SVM can learn nonlinear decision

surfaces and perform well in the presence of a large number

of predictors, even with a small number of cases (López et al.,

2022). This makes SVM very appealing for tackling environmental

classification and EI construction. Considering the importance

of high-throughput environmental data (Rogers et al., 2021),

GEIs and environmental covariates, among other factors,

should be incorporated into prediction models (Crossa

et al., 2021). Through enviromic assembly, relatedness

among field trials can be established and only the most

representative set of experiments is used to train models, an

approach called ‘‘enviromic + genomic prediction’’ (Crossa et al.,

2021).

With improved proximal and remote sensor technologies, impor-

tant environmental variables that determine G3E3M interactions

have been quantified andmeasured, bringing a wide range of op-

portunities for accelerating crop improvement through enviromic

technologies (Cooper et al., 2020; Peng et al., 2020; Kusmec

et al., 2021) and enabling environment-specific prediction

(Rogers et al., 2021). With genotypic and environmental

predictors, an integrated view of G3E3M interactions can be

predicted across all breeding program stages for selection and

hybrid advancement (Cooper et al., 2014b). In this case, M, as

a way to modify E, can simply be included in prediction models

as an environmental variable (Harfouche et al., 2019).

Using simulated data, an index-based enviromics method (GIS–

GEI) was developed. Because of its higher granular resolution,

GIS–GEI allows for accurate identification of sites for their most

appropriate genotypes, better definition of target environments

with high genetic correlation to ensure selection gains across envi-

ronments, and efficient determination of the best sites for future ex-

periments (Resende et al., 2021). To probe the genetic

underpinnings of climate adaptation for crop species, climatype

data have been amassed for every square kilometer of land on

Earth. Using the Summit supercomputer, each square kilometer

was then compared with every other square kilometer to identify

similar environments (Streich et al., 2020). These climatype data

were combined with GPS coordinates associated with individual

crop genotypes to project which genes and genetic interactions

are associated with specific climatic conditions (Beans, 2020).

EI: Kernel approaches

Enviromic kernels can be constructed to capture the macro-envi-

ronmental relatedness that shapes the phenotypic variation of

relatives (Costa-Neto et al., 2020). To implement this modeling
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approach, main functions were designed for constructing

environmental relationship kernels using environmental

information, integrating these kernels into statistical models that

account for different structures capable of explaining the

phenotypic variation, and fitting regression models that account

for genomic and enviromic data (Costa-Neto et al., 2021b). This

model can be extended to handle more complicated models

involving environmental variables and iGEP. The task of

classification is to classify different classes based on known

input labels (supervised learning). One method is SVM, in which

kernel methods are used. A user-specified kernel function (simi-

larity function) adds another dimension to the dataset.
Factorial and spatiotemporal structure of plant breeding
data

A factor structure is a correlational relationship among a number

of variables. Plant breeding data involve many variables with a

complex factorial and spatiotemporal structure of multiple layers.

Therefore, plant predictive breedingmust consider all these com-

plications (Shahi et al., 2022), involving MTMEs of multiple layers

(Figure 2).

Multiple traits and multiple environments

When low-heritability traits have at least moderate correlation with

high-heritability traits, the predictability for the low-heritability traits

could be strongly increased by using a multi-trait model (Jia and

Jannink, 2012; Montesinos-López et al., 2016; Budhlakoti et al.,

2019). The prediction accuracy for low-heritability key traits can

be improved by using high-heritability secondary traits (Jia and

Jannink, 2012; Muranty et al., 2015). Building on the strength of

ML, an integrative multi-trait breeding strategy that uses target-

oriented prioritization was performed, with up to 91% of the accu-

racy achieved for identifying a candidate that is phenotypically

closest to an ideotype, or target variety (Yang et al., 2022). This

strategy first learned the similarity between genomic-predicted

values and measured phenotypic values and then predicted the

degree of similarity between inbreds or hybrids and the target

with respect to hundreds of traits.

When environmental information is available, a univariate GBLUP

model can be extended as a Bayesian genomic MTME model by

adding the interaction term (Montesinos-López et al., 2016).

Large-scale correlations among traits evaluated across diverse

environments can be used to train prediction models. The perfor-

mance of 13 quality traits in wheat was predicted using 2 multi-

trait models and 5 datasets based on field evaluations over 2

years (Ibba et al., 2020). The Bayesian MTME model helps

capture the correlations among traits and among years, thus

increasing prediction accuracy. A combinatorial optimization

model was combined with an RF for predicting the yield

performance of crossing testers and inbreds. When the model

was designed to detect GEIs, the RF model was able to

capture other types of linear and nonlinear effects (Ansarifar

et al., 2020).

Multiple layers

To produce amodel for important biological interactions, an algo-

rithm should be developed to build an accurate prediction from

multiomics data layers to identify the combinatoric interactive

elements within and between those layers. In iGEP, the ‘‘layer’’

represents different categories of G-P-E. Taking envirotype as

an example, the layer consists of the envirotypic data from
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weather, climate, canopy, agronomic practice, and accompa-

nying organisms (Figure 2). With two hidden layers, neural

networks can usually represent functions with any type of

polytope shape. Empirical evidence shows that using more

than two hidden layers can better capture nonlinear patterns

and complex interactions (Chollet and Allaire, 2017).

To approximate any continuous function, MLPs are designed for

solving problems that are not linearly separable; they contain

input, output, and hidden layers, and the input layer receives

the input signal for processing. The output layer performs the

required task, such as prediction and classification. When only

one hidden layer is present, the DL model becomes a conven-

tional ANNmodel, but more than one hidden layer can better cap-

ture complex interactions, nonlinearities, and nonadditive effects.

Each layer performs nonlinear transformations, and connections

among these layers are made using weights. Using too few or

too many neurons in the hidden layers will result in underfitting

or overfitting, respectively. For example, using 5000 markers as

input variables to predict grain yield (a continuous outcome)

means that we should have the same number of neurons but

only 1 output layer. There is no unique and reliable rule for how

to determine the required number of neurons in the hidden layers,

as this number depends on input neuron number, training data

(amount and quality), and learning task complexity (Lantz, 2015).

To determine the required neuron number, two approaches can

be taken. The backward approach begins with a very large

number of neurons and evaluates their performance, then

decreases the number of neurons until there is no more gain in

reducing the testing error. The forward approach begins with

half of the input neurons and increases the number of neurons

until no significant gain is observed.

Hyperparameter tuning and dropout

Successful applicationsofANN/DLdependonhow the right hyper-

parameters are chosen to begin the learning process. As a critical

aspect of the ML training process, hyperparameters need to be

tuned for network topology, activation functions, hidden-layer

number, neuron number in each layer, learning rate, etc. (López

et al., 2022). Hyperparameter selection is performed with the goal

that a model should neither underfit nor overfit the training

datasets. However, this task is challenging because the number

of hyperparameters required inANN/DL is large. Tuninghyperpara-

meters for DL models tends to be more computationally intensive

(Danilevicz et al., 2022) and can be performed by grid search,

random search, Latin hypercube sampling, and optimization

(Koch et al., 2017). With more and more accumulated G-P-E

data, hyperparameters need to be tuned more efficiently.

To prevent overfitting and improve the model’s generalizability,

regularization (penalization) is used to reduce testing errors so

that the model performs well on new data as well as training

data. One means of regularization is to minimize an augmented

loss function. For ANN/DL models, more than one hyperpara-

meter is needed, and different levels of penalties can be applied

to different layers and hyperparameters. Another type of regula-

rization is the dropout, which consists of setting to zero a random

fraction (or percentage) of the weights of the input neurons or hid-

den neurons (Srivastava et al., 2014). The dropout (%) is

determined based on starting point, network size, application

layer, step size, and network weight (López et al., 2022). The
thor.
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dropout method can be implemented with any type of loss

function. All the loss functions can be converted to regularized

(penalized) functions. It remains to be determined how loss

functions and dropout can be used for enviromic data and the

integration of different datasets.

SMART BREEDING BY PREDICTION-
BASED CROP REDESIGN

Recent developments in genetics, genomics, and molecular

biology have significantly accelerated the discovery of func-

tional genes, metabolic pathways, and molecular networks.

Multiomics information has quickly driven plant breeding

from selection-based programs to prediction-based crop

redesign, contributing to improved genetic gain through the

creation and utilization of genetic variation. Smart breeding

can be performed through iGEP to improve selection effi-

ciency, accelerate the breeding process, breed new crops

via de novo domestication, and design ideotypes through syn-

thetic biology. In contrast to the iGEP methods discussed in

previous sections, three strategies that may not require any

proposed statistical models are pathway-driven breeding, de

novo domestication, and synthetic biology (Wu et al., 2021).

However, information from genes, pathways, and networks

can be transformed into a new dimension of genotypic data

and then incorporated into predictive models.

Breeding by crop redesign at the micro scale

Three models can be used to redesign crops at the micro scale

(Table 4), including designs based on genes, metabolisms, and

networks. As a model crop for gene design, gene cloning, and

functional analysis, rice has provided deep insights into

phytohormones and growth, nutrient use efficiency, responses

to abiotic stresses, defense activation, and signaling in biotic
Levels Models Strategies

Micro

scale

gene

design

site-directed gene knockout, mutation, or gene

RNA interference; transgenics; marker-assisted
selection

metabolic

design

substitution, modification, optimization, and

improvement of metabolic pathways

network

design

design and improvement of parameters, such a

network regulators, network structure, network
and borders

Macro

scale

individual

design

morphology, ideotype, assimilate distribution, b

and abiotic stress tolerance, trait interaction, an
complementation

population
design

structural optimization, ecological stabilization,
adaptability improvement, high-density planting

functional canopy, photosynthetic efficiency, an

source-sink coordination and compensation

species
design

integration of favorable traits from different spec
adaptation to different ecological environments

breeding methodologies: environmentally friend

resource-saving, product-diversified, usage-fle

and more efficient breeding

Table 4. Strategies for crop redesign at the micro and macro scales
Revised from Zhang et al. (2021b).

Molecula
interactions, photoperiodic flowering, and the control of fertility

and sterility (Chen et al., 2022b). With functional analysis of

increasing numbers of candidate genes, the best alleles, allele

combinations, and favorable haplotypes can be identified,

modeled, edited, designed, and used for marker-assisted selec-

tion (MAS) and prediction. Similarly, crop designwas proposed to

develop ‘‘smart super rice’’ (Qian, 2017) and ‘‘green super rice’’

(Yu et al., 2020; 2021b), identifying target genes controlling

phenotypes of interest and germplasm resources where the

relevant genes could be sourced.

At themicro scale,metabolic pathways can be substituted, modi-

fied, or improved through metabolism design. ‘‘The C4 Rice

Project,’’ an international collaboration to introduce C4 traits

into rice, is expected to increase photosynthetic efficiency by

50% (https://c4rice.com). A pan-European research initiative,

the CropBooster Program, aims to explore scientific options for

improving plant performance by increasing photosynthesis

(Harbinson et al., 2021). To address water limitations and

mechanized rice production, elite rice varieties have been

developed by introgressing drought tolerance and water-saving

genes (and probably unspecified but associated pathways)

from upland rice in an example of the network design strategy.

The new rice can be planted by direct seeding in rainfed

fields (Luo et al., 2019), triggering the rice ‘‘blue revolution’’ in

China by freeing rice cultivation from irrigation, planting,

and harvesting rice as wheat and reducing greenhouse gas

emissions (Xia et al., 2022).

Multi-scale regulation of networks can bemeasured as changes in

mRNAsynthesis, stability, and decay and in protein translation, ac-

tivity, affinity, and decay. The regulatory linkages across biological

scales can be constitutive, tunable, or switchable under changing

environments. Regulatory genomic variation of influential nodes

in network modules perturbs network properties, such as hubs,
Examples

editing; favorable alleles or haplotypes, allele/haplotype

combinations generated and selected via marker-
assisted selection

metabolic pathways modified for improved

photosynthetic rate

s

nodes,

rainfed, direct-seeded, and drought-tolerant rice

iotic

d

ideotype created by combining semi-dwarfism, erect

top leaves, and strong stems

,

d

maize plants suitable for high-density planting and
mechanized grain harvesting; small and miniaturized

crops for facility agriculture and verticulture

ies and
and

ly,

xible,

perennial cereals (rice, wheat, and maize); diploid
potato suitable for hybrid breeding; de novo

domestication of wild plants; introgression of new

alleles from closely related species

.
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topology, and clustering, and serves as a source of variation for

novel traits (Hetti-Arachchilage et al., 2022). Predictive modeling

and quantitative characterization of synthetic modules provide a

detailed understanding of complex regulatory and signaling

networks.

The genes, metabolic pathways and networks that control agro-

nomic traits can be classified into independent modules, such

as those for yield, quality, and resistance. Breeding by molecu-

lar module design began with the dissection of molecular

modules for complex traits to identify allelic variations and

gene network interactions (Xue et al., 2015). Molecular

modules can be dissected into multiple components for a

group of associated traits and then integrated to interact with

one another through high-efficiency design and assembly.

Finally, improved varieties can be developed through designed

and predictive breeding by incorporating the modules and asso-

ciated genes and networks in predictions. For example, using

Kongyu131 as a base variety, several improved versions were

developed by introgression of different trait modules, including

a single-point substitution line with significant heading date

delay (Wang et al., 2019a).

Future efforts will need to incorporate multiple layers of informa-

tion to predict systems-level behavior of cropplant networks and

their dynamics in changing environments. Network rewiring

arises from changes in node and edge linkages, topological

properties of individual nodes, subnetwork properties, and

global topological properties. Hetti-Arachchilage et al. (2022)

summarized several approaches for network rewiring: plant

growth and stress responses that occur through signaling

cascades can be fine-tuned by miRNA-mediated stress regula-

tory networks; gene regulatory networks can be mediated by

heritable and robust epigenetic regulators; expression of regula-

tory and downstream stress-related genes can be fine-tuned by

alternative splicing; diverse and complex protein translational

modifications can be performed by dynamic control of the prote-

ome; and natural and induced allelic variation can be leveraged

for gene regulation.

Breeding by crop redesign at the macro scale

Crop redesigncanalsobeperformedat themacro scale for individ-

uals, populations, and species (Table 4). Individual design dates

back to the development of wheat and rice ideotypes by

combining semi-dwarfism, erect top leaves, and strong stems

(Jennings, 1964; Beachell and Jennings, 1965; Donald, 1968;

Peng et al., 2008). The maize ideotype has been characterized by

Mock and Pearce (1975), including stiff, vertically oriented leaves

above the ear, a short interval between pollen shed and silk

emergence, and small tassel size. At the population level, maize

has been improved over the past decades to increase its

suitability for high-density planting (from 30K to 79K plants/ha)

(Duvick et al., 2004), contributing to significant yield increases. An

array of prospective redesigns of plant systems, including

straightforward alterations and conceptual redesigns, have been

explored for improved photosynthetic efficiency and performance

(Ort et al., 2015). Species design at the macro scale would

dramatically reshape a plant species to adapt to a completely

different ecological environment or production system (Tian et al.,

2021). Two examples of such species design are perennial rice

and seed-propagated diploid potato.
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To increase food and ecosystem security, production of perennial

grains has been proposed (Glover et al., 2010). To develop

perennial crops, breeding programs must combine multiple

desirable traits, including reliable regrowth with high yield and

quality over multiple years, adaptation to abiotic stresses, and

resistance to pests and diseases. A successful example of such

population design is perennial varieties of rice. The first variety of

rice capable of surviving for consecutive years, PR23, was bred

in 2018 via clonal propagation of the rhizome from Oryza

longistaminata. This variety was released in China and is now

being tested throughout Asia and Africa (Huang et al., 2018).

Developing a self-pollinated diploid potato that can be bred

through regular hybridization and selection is another example

of crop redesign at the macro scale (here, species), although it

will be achieved by genetic modification of many genes and path-

ways at the micro scale. Transforming potato from clonally prop-

agated into seed propagated represents a significant innovation

in plant breeding. Owing to deleterious mutations, it has been

challenging to develop highly homozygous inbred potato lines.

Redesign at the macro level was used to develop a generation

of pure and fertile potato lines and thereby uniform, vigorous

F1s. The redesign involved: (1) selection of starting materials,

(2) genetic analysis of Solanum populations, (3) development of

inbred lines, and (4) generation of vigorous F1 hybrids. During

breeding, beneficial alleles were combined in the hybrids, and

large-effect deleterious mutations were eliminated (Zhang et al.,

2021a). The selection criteria included genome homozygosity

and deleterious mutations in starting materials, segregation

distortion in the S1 population, haplotype information for

inferring the break of tight linkage between beneficial and

deleterious alleles, and parental genome complementarity.

Chromosome-scale and haplotype-resolved genome assembly

enabled reconstruction of the four haplotypes of cultivated potato

(Sun et al., 2022), ultimately increasing breeding success for the

seed-propagated diploid.
Synthetic biology and de novo domestication

Metabolic pathways that are more efficient than native ones

could be synthesized based on predictive results. An example

is the attempt to install synthetic glycolate metabolic pathways

in tobacco, maximizing flux through the pathways by inhibiting

glycolate export from the chloroplast (South et al., 2019).

With the synthetic pathways, photosynthetic quantum yield

was improved by 20%, indicating that engineering alternative

glycolate metabolic pathways into crop chloroplasts can

drive increases in C3 crop yield. In rice, it was demonstrated

that a partial C4 pathway can be established by

transformation with a single construct harboring coding

sequences for five enzymes of C4 metabolism (Ermakova

et al., 2021). Although the enzyme expression levels require

improvement, their cell-specific expression patterns were

largely appropriate for two-cell C4 photosynthesis; further-

more, the observed photosynthetic phenotypes of the trans-

genic plants were consistent with the occurrence of C4

carboxylation in vivo, suggesting that a full C4 metabolic

pathway may be possible in rice.

Synthetic modification has been used to develop nitrogen fixa-

tion capacities in nonlegume plants via rhizobial symbiosis
thor.
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(Bozsoki et al., 2020). Plants evolved lysine motif (LysM)

receptors to recognize and parse microbial elicitors and drive

intracellular signaling to regulate microbial colonization. Two

motifs in the LysM1 domains of chitin and nodulation (Nod) fac-

tor receptors of Lotus japonicus determine the recognition of

specific ligands and enable discrimination between their in

planta functions. Binding specificities in LysM receptors can

be altered to facilitate Nod factor recognition and symbiotic

signaling from a chitin receptor. A more recent study revealed

the mechanism of nitrogen fixation in legume plants (Dong

et al., 2021): a SHORTROOT–SCARECROW (SHR–SCR) stem

cell program in cortical cells of the legume Medicago truncatula

was found to specify their distinct fate. Legume species have a

conserved cortical SHR–SCR network for response to rhizobial

signals and initiation of cortical cell division for de novo nodule

organogenesis.

Discovery of key domestication genes suggests that de novo

domestication is a feasible method of crop redesign (Fernie and

Yan, 2019; Tian et al., 2021; Chen et al., 2022c; Yu and Li,

2022). A new species could be shaped through selection of

specific organs (Osnas, 2012), de novo domestication of a wild

relative with different ploidy (Yu et al., 2021a), allopolyploidy

among subspecies (Griffiths et al., 1999), or absorption of new

alleles through introgression from nearby species (Arnold et al.,

2016). Many genes have been studied for domestication traits,

including fruit/seed size and weight, grain filling, growth habits,

plant/inflorescence architecture, seed casing/color/dormancy,

shattering, style length, and flowering (reviewed by Fernie and

Yan, 2019). Wild crop relatives can be redomesticated to breed

improved cultivated species that are adapted to climate change

and environmental stresses. Traditional breeding approaches

and gene editing have been proposed as two parallel

approaches for de novo domestication (Fernie and Yan, 2019;

Yu et al., 2021a). At present, gene editing in all plants relies on

transformation technology. New technologies for addressing

this dependency include high-efficiency transformation (Lowe

et al., 2016), pollen-based transformation (Zhao et al., 2017),

functional cloning of genes that overcomes genotype

dependency (Wang et al., 2022a), and marker-assisted transfer

of gene-edited traits.
TURNING SMART BREEDING INTO
GENETIC GAIN

A comprehensive survey of US and European executives

involved in big data initiatives identified the top 10 challenges

in operationalizing big data and turning them into value

(Capgemini Inc., 2016): IT budget constraints, data security

concerns, integration challenges, lack of technical expertise,

proliferation of data silos, corporate culture, poor or insufficient

data quality, compliance concerns, user adoption and training

needs, and manual processing/time constraints. In the field of

plant breeding, big data and AI could potentially transform plant

breeding from an art to a more data-driven science. Turning

smart breeding into genetic gain and finally into breeding value

and economic gain depends on how well all resources can be in-

tegrated and utilized together, including big data, AI, and innova-

tive breeding technologies such as iGEP. In developing countries

and small- and medium-sized breeding enterprises, sharing
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breeding platforms and resources while protecting the intellec-

tual property of participants will be critical for the application of

smart breeding.

Turning plant breeding from art to more data-driven
science

Largely owing to limited information and resources for trait pre-

diction, plant breeding has long been considered both an art

and a science. However, prediction models can be constructed

and validated using real data, simulated data, and their combina-

tion. This procedure can be facilitated by AI. In the era of smart

breeding, breeders can be both generators and users of big

data. We are moving into a new stage of mega data- and cloud

technology-assisted breeding. Transition of plant breeding from

an art to a data-driven science will have four significant

features: targeted design, predicted selection, pipeline-driven

approaches, and step-by-step improvement by ‘‘standing on

the giant’s shoulder’’ (using the best base variety or material for

further improvement). Marker-assisted plant breeding requires

many years in developing countries and small- and medium-

sized enterprises (Xu and Crouch, 2008). Smart breeding is

expected to take approximately the same amount of time to

become a routine practice worldwide. Even if it becomes widely

applied in some countries or MSEs, it will take years to spread

out and be recognized by the whole community, similar to the

application of GS from livestock to crop plants (Xu et al., 2020a).

Smart breeding driven by big data, AI, and iGEP can use all avail-

able information and resources collected spatiotemporally. With

optimized models generated using well-selected data and popu-

lations, prediction should be equivalent to a comprehensive eval-

uation across multiple years and MET sites. Therefore, predictive

breeding can reveal phenotypic performance better than any sin-

gle observation. Although breeders may place greater trust in

what they can see with the naked eye in the field, each such

observation is just one of many samplings required for accurate

judgement. Evaluation and thus selection from such a random

sample will vary greatly with time, location, and individual

breeders.

Modern plant breeding has become a field with a great deal of

technological support and a breeding pipeline that brings

together breeders, technicians, platforms, facilities, experimental

stations, and METs. For example, an intelligent greenhouse has

many components, including monitors, sensors, and controllers.

Smart breeding should aim to integrate the ‘‘internet of things’’

with intelligent facilities and crop management, driven by big

data, AI, and iGEP (Figure 3).

Integrative breeding programs

Although application of new breeding technologies has been

largely crop dependent, most crop species share a similar panel

of innovations (Figure 3). Breeding facilities (e.g., genotyping,

phenotyping, and envirotyping), information management

(breeding data archiving, integration, analytics, and mining,

through a system such as Tripal; Staton et al., 2021), and

decision support (simulation, prediction, validation,

optimization, and selection) can be integrated, and improved

germplasm and varieties can be protected through big-data-

assisted plant variety protection (Figure 1).
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Figure 3. Conceptualization of a smart breeding platform driven by big data, artificial intelligence, and iGEP.
Beginning at the center, level 1 represents big data. Moving outward, level 2 represents iGEP models (S, spatiotemporal G-P-E). In the formulas,

lowercase, bold lowercase, and bold uppercase letters represent single, vector, and matrix variables, respectively. Level 3 shows a breeding pipeline

from strategic plan and line development through hybrid development and multi-environmental trials to release and commercialization. Level 4 shows

new breeding technologies (CD, crop design; DH, doubled haploids; SP, speed breeding; MAS, marker-assisted selection; GP, genomic prediction; TG,

transgenics; GE, genome editing). The white cross that divides the figure into four quadrants represents information flow between layers and circles,

integrating all components together like an internet of things. The large arrows in circle 3 represent the direction of the breeding workflow and pipeline,

starting from I, moving to IV, and circling back through the breeding pipeline. Divided by the yellow circle, the inside contains levels 1 and 2 that share data

and models, and the outside contains levels 3 and 4 that share the breeding pipeline and new breeding technologies.

Molecular Plant Smart breeding
Although genetic transformation has been used in commercial-

ized varieties globally, transgenic technology remains to be

fully integrated into routine breeding pipelines. One of the

major limitations is that most base varieties are recalcitrant

to genetic transformation. The same situation occurs with

genome editing using CRISPR/Cas9 (Jinek et al., 2012),

in which genetic transformation is also required. Once

transformations are completed using a tissue-culture-friendly

variety, marker-assisted backcrossing (MAB) can then be

used to introgress target genes from transgenic or genome-

edited lines into base varieties or desirable breeding materials.

MAB has been widely used in MSEs to simultaneously intro-

gress two to seven transgenes into several hundreds of in-

breds or varieties each year (Kunsheng Wu 2017, personal

communication).
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Plant breeding programs can be accelerated by shortening the

number of generations required to reach pure breeding and by

speeding plant growth and development (Xu et al., 2017; Sinha

et al., 2021). DH approaches can generate true-breeding lines in

two generations (De La Fuente et al., 2013), compared with the

eight or more generations required with continuous inbreeding,

significantly shortening the breeding cycle. The gene that

controls haploid induction in maize has been cloned (Kelliher

et al., 2017; Liu et al., 2017), and DH breeding is now

expected to be used for all crop species through genomic

editing (e.g., Wang et al., 2022b). Although pollen culture has

been very successful in the generation of DH lines, DH

breeding has not been widely used in self-pollinated crop spe-

cies, largely because generation of true-breeding lines by self-

ing is much easier than with outcrossed species. It is expected
thor.
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that combining cloned genes with genome editing (Yao et al.,

2018; Liu et al., 2021) will stimulate DH breeding in self-

pollinated crops.

In contrast to DH-based approaches, speed breeding can be

used to accelerate the generation time and thus shorten the

breeding cycle for all crop species and breeding programs.

However, the environments required for the speed breeding pro-

cess will be crop specific and case dependent. Combining em-

bryo culture with management of water stress, light intensity

and duration, temperature, and potting mixture enables the pro-

duction of up to eight generations of wheat and nine generations

of barley per year (Zheng et al., 2013). For some crops (wheat,

barley, chickpea, and canola), growth in a managed

environment with an extended photoperiod (22/2 h light/dark)

causes plants to flower in a much shorter time (Watson et al.,

2018). Adjustment of photoperiod and temperature can be

combined with alterations in other factors that affect growth

and flowering, such as nutrients and microelement levels.

Reproduction processes could be accelerated by regulating all

of the genes that affect plant growth and development (Fasong

Zhou, personal communication). MAS can be used to identify

the best combination of relevant genes for manipulation. As a

result, a suite of accelerating factors could be developed for

each crop species or for specific genotypes.

In response to the challenge of GS with big data, Bayer built an

AI assistant that helps breeders select the right candidates.

Cloud-based algorithms built on a foundation of roughly 1.7 tril-

lion calculations enables a dramatic shift in the scale and speed

of the breeding pipeline. Predicting the potential of multiple

breeding lines allows breeders to disregard certain lines that

are not likely to achieve the intended goal. With neural networks,

AI-assistedmodels are literally learning throughout the entire pro-

cess, providing breeders a road map to follow with enhanced ac-

curacy and efficiency (https://www.bayer.com/en/agriculture/

article/how-math-and-data-science-accelerate-innovation-while-

conserving).
Open-source breeding

Large-scale commercial breeding programs typically operate as

a coordinated network, increasing the efficiency of breeding

platforms and saving costs (Xu et al., 2020a). These programs

generate enough big data to build their own iGEP models.

With open-source breeding, small- and medium-sized breeding

enterprises will each function as a breeding teamwithin anMSE.

Supported by synthetic pipeline services, low-cost genotyping

platforms, and the capacity to obtain models and haplotype ef-

fects, partners can share their breeding data and materials after

each breeding cycle. This will allow eachmember to move to the

next cycle with accumulated information andmaterials, updated

designs, and optimized models, ultimately improving genetic

gain (Xu et al., 2017, 2020a). Such an open-source breeding

initiative creates additional challenges with respect to big data

management, model construction, and prediction, owing to

the increased complexity of the breeding information being

incorporated. In open-source breeding programs, the intellec-

tual property of plant varieties can be protected using a highly

efficient, low-cost molecular marker system such as genotyping

by target sequencing and liquid chip (Guo et al., 2021). As DNA
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profiles can be constructed for almost all selections and

breeding materials that have been or are being shared in the

initiative, an acceptable royalty system can be established as

a revenue generator.

The prediction accuracy of ML models is largely determined by

the quality of the dataset employed (LeCun et al., 2015).

Consequently, a frequent challenge for training robust ML

models is the lack of appropriate datasets with enough data

points and sample variability. A few international consortia,

such as AgBioData (Harper et al., 2018) and Breeding API

(Selby et al., 2019), are making an effort to share and transform

breeding datasets. However, a centralized platform for

collecting, hosting, and managing enviromic data is needed to

make the relevant data more widely available, similar to the

approaches used to share other omics data. An alternative

approach to protect sensitive information while supporting

collaboration toward data-driven breeding is the establishment

of federated learning cohorts (Kone�cný et al., 2016). Within

these, each participant institution trains the model with its

own dataset and shares the updated model peer to peer

or through a centralized server that will aggregate the

model’s weights. The updated model parameters thus

improve the baseline model, which is then shared among

institutions (Yang et al., 2019a, 2019b). Another factor that

prevents researchers from employing previously published

datasets is the lack of standardized metadata descriptions,

including experimental design, data collection protocol, field

management, environmental variables, and other information

(Danilevicz et al., 2022). The minimum information about a

plant phenotyping project (Papoutsoglou et al., 2020) offers a

resource to guide researchers in annotating metadata to

increase usability and interoperability.

There are several ongoing open-source breeding programs in

China, including maize molecular breeding initiatives and inte-

grated plant breeding platforms, members of which share nearly

all of their data and materials (Xu et al., 2020a). By integrating

the breeding technologies discussed above (Figure 3), open-

source breeding initiatives can be established in locations with

nontarget environments. An example is Hainan, China, where

almost all breeding enterprises perform off-season breeding

(Zhang et al., 2021b). Using 44 624 wheat lines and over

7.6 million genotyping-by-sequencing data points, a reference

wheat genotype–phenotype map was built with a large

number of marker-trait associations (Juliana et al., 2019),

providing a valuable resource for worldwide open-source

breeding in wheat.

International initiatives, such as the Excellence in Breeding Plat-

form (http://excellenceinbreeding.org), enable greater technol-

ogy uptake by breeders and farmers and integrate the community

globally. In addition to the five modules established, envirotyping

should also be included as an independent module. With a well-

established open-source breeding system, the accumulation of

small dispersed datasets from all partners and collaborators

builds large and diverse datasets that can be shared, ‘‘many a lit-

tle making a mickle.’’ All public information, including genotypic

data for germplasm bank materials and envirotypic data for

weather, climate, and soil, should be made available for open-

source breeding.
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CONCLUDING REMARKS

Future plant breeding will become smart with the implementation

of big data, AI, and iGEP. Smart breeding will enable all breeding-

related information, including spatiotemporal omics, to be

broadly accessible in a usable format. Innovative breeding tech-

nologies, including transgenics, genome editing, DH-based

breeding, speed breeding, and MAS, will be integrated into a

smart breeding pipeline (Figure 3). Model selection and

optimization can be performed in iGEP, with the best option

identified for each breeding population. Incorporation of

enviromics can improve prediction accuracy through better

understanding of GEIs, enhanced phenotyping precision,

managed environments, and optimized model construction.

Establishment of integrative plant breeding platforms and

open-source breeding initiatives will aid in translating smart

breeding efforts into genetic gain in the breeding pipelines of na-

tional programs as well as small- and medium-sized breeding

enterprises.
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A., Juliana, P., Guzman, C., Delorean, E., Dreisigacker, S., and
thor.

http://refhub.elsevier.com/S1674-2052(22)00295-7/sref64
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref64
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref64
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref65
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref65
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref65
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref66
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref66
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref66
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref67
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref67
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref67
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref67
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref68
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref68
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref68
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref68
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref68
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref69
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref69
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref69
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref69
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref70
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref70
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref71
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref71
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref71
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref72
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref72
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref73
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref73
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref73
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref73
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref74
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref74
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref74
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref75
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref75
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref75
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref75
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref75
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref76
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref76
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref77
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref77
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref77
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref77
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref77
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref78
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref78
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref78
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref78
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref79
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref79
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref79
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref79
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref80
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref80
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref81
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref81
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref82
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref82
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref82
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref83
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref83
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref83
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref83
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref84
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref84
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref84
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref85
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref85
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref85
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref85
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref85
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref86
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref86
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref87
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref87
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref87
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref88
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref88
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref88
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref89
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref89
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref89
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref89
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref89
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref90
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref90
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref90
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref90
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref90
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref91
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref91
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref92
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref92
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref92
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref93
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref93
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref93
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref93
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref94
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref94
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref94
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref95
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref95
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref95
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref96
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref96
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref96
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref97
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref97
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref97
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref98
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref98
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref98
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref98
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref98
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref99
http://refhub.elsevier.com/S1674-2052(22)00295-7/sref99


Smart breeding Molecular Plant
Poland, J. (2020). Genome-based prediction of multiple wheat quality

traits in multiple years. Plant Genome 13:e20034.

Jansen, R.C., and Nap, J.-P. (2001). Genetical genomics: the added

value from segregation. Trends Genet. 17:388–391.

Jarquı́n, D., Crossa, J., Lacaze, X., Du Cheyron, P., Daucourt, J.,

Lorgeou, J., Piraux, F., Guerreiro, L., Pérez, P., Calus, M., et al.

(2014). A reaction norm model for genomic selection using high-

dimensional genomic and environmental data. Theor. Appl. Genet.

127:595–607.

Jenkins, M.T. (1934). Methods of estimating the performance of double

crosses in corn. Agron. J. 26:199–204.

Jennings, P.R. (1964). Plant type as a rice breeding objective. Crop Sci.

4:13–15.

Jia, Y., and Jannink, J.-L. (2012). Multiple-trait genomic selection

methods increase genetic value prediction accuracy. Genetics

192:1513–1522.

Jiang, J., Zhang, Q., Ma, L., Li, J., Wang, Z., and Liu, J.F. (2015). Joint

prediction of multiple quantitative traits using a Bayesian multivariate

antedependence model. Heredity 115:29–36.

Jin, X., Zarco-Tejada, P.J., Schmidhalter, U., Reynolds, M.P.,

Hawkesford, M.J., Varshney, R.K., Yang, T., Nie, C., Li, Z., Ming,

B., et al. (2021). High-throughput estimation of crop traits: a review

of ground and aerial phenotyping platforms. IEEE Geosci. Remote

Sens. Mag. 9:200–231.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and

Charpentier, E. (2012). A programmable dual-RNA–guided DNA

endonuclease in adaptive bacterial immunity. Science 337:816–821.

Johnson, W.B., and Lindenstrauss, J. (1984). Extensions of lipschitz

mappings into a Hilbert space. In Conference in Modern Analysis and

Probability (New Haven, Conn., 1982). Contemporary Mathematics.

26. Providence, RI (American Mathematical Society), pp. 189–206.

Jubair, S., and Domaratzki, M. (2019). Ensemble supervised learning for

genomic selection. In In: 2019 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM) (IEEE), pp. 1993–2000.

Juliana, P., Poland, J., Huerta-Espino, J., Shrestha, S., Crossa, J.,

Crespo-Herrera, L., Toledo, F.H., Govindan, V., Mondal, S.,

Kumar, U., et al. (2019). Improving grain yield, stress resilience and

quality of bread wheat using large-scale genomics. Nat. Genet.

51:1530–1539.

Kang, M.S. (2002). Genotype-environment interaction: progress and

prospects. In Quantitative Genetics, Genomics and Plant Breeding,

M.S. Kang, ed. (CAB International), pp. 221–243.

Kelliher, T., Starr, D., Richbourg, L., Chintamanani, S., Delzer, B.,

Nuccio, M.L., Green, J., Chen, Z., McCuiston, J., Wang, W., et al.

(2017). MATRILINEAL, a sperm-specific phospholipase, triggers

maize haploid induction. Nature 542:105–109.

Khaki, S., and Wang, L. (2019). Crop yield prediction using deep neural

networks. Front. Plant Sci. 10:621.

Khaki, S., Khalilzadeh, Z., and Wang, L. (2020). Predicting yield

performance of parents in plant breeding: a neural collaborative

filtering approach. PLoS One 15:e0233382.

Kim, K.H., Kim, J.Y., Lim, W.J., Jeong, S., Lee, H.Y., Cho, Y., Moon,

J.K., and Kim, N. (2020). Genome-wide association and epistatic

interactions of flowering time in soybean cultivar. PLoS One

15:e0228114.

Koch, P., Wujek, B., Golovidov, O., and Gardner, S. (2017). Automated

hyperparameter tuning for effective machine learning. In Proceedings of

the SAS Global Forum 2017 Conference (Cary, NC: SAS Institute Inc).

http://support.sas.com/resources/papers/proceedings17/SAS514-2017.

pdf.
Molecula
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