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The Green Revolution of the 1950s and 1960s—also known as 
the third Agricultural Revolution—markedly increased the 
production yield of global agriculture, thereby avoiding the 

spread of famine and malnutrition. However, the world population 
has grown by more than 5 billion since the beginning of the Green 
Revolution, which has necessitated a continuous growth in crop 
production. The global agriculture and food security sector is fac-
ing a wide range of challenges, such as low crop yields, declining soil 
health and fertility, and low use efficiency of agrochemicals mainly 
due to excessive use of fertilizers and pesticides, shrinking arable 
land per capita and diminishing freshwater availability for irriga-
tion1. Moreover, climate change arising from increasing atmospheric 
CO2 concentration leading to rising temperature is likely to further 
affect the resilience of agricultural soils and their ability to sustain 
productivity and ensure food security for an increasing human 
population. Nanotechnology offers great potential to enable preci-
sion and sustainable agriculture, the opportunities and challenges of 
which have been discussed in several recent reviews covering strat-
egies to enhance crop nutrition and smart plant sensors2–4. With 
the application of nanotechnology, the delivery of fertilizer5 can be 
tailored by targeting to specific tissues or organisms and delivered 
in a controlled manner via stimulus-responsive release, potentially 
improving nutrient-use efficiency (NUE) by releasing the nutrient 
slowly for plant uptake6. Nano-enabled agriculture is also expected 
to target pests more efficiently using smaller amounts of pesticide7, 
thereby avoiding widespread effects on soil health and biodiversity, 
and improving soil function and nutrient cycling by enhancing the 
soil microbiome (optimization of nitrifying and denitrifying bacte-
rial communities). Longer-term applications include development 
of smart ‘sensor’ plants, whereby the plant itself is adapted to sense 
abiotic stress using targeted delivery of nanomaterials8. Figure 1 
summarizes four key areas in which nanotechnology is improv-
ing—and will continue to improve—the precision and sustainability 
of agriculture.

As with all new technologies, however, the risks must be evalu-
ated in parallel with the benefits, and indeed several nanomaterials 
have been demonstrated to cause negative changes in soil commu-
nity structure; for example, there were cascading negative effects on 
denitrification enzyme activity and substantial modifications of the 

bacterial community structure after just 90 days of exposure to a 
realistic concentration of TiO2-containing nanoparticles (1 mg kg−1 
dry soil)9, and studies with silver-containing nanomaterials, which 
are well known for their antimicrobial activity, have shown that the 
impact on soil community composition over 90 days is affected by 
exposure time and physicochemical composition of soil, as well as 
the type and coating of the nanomaterials10. Thus, an important 
caveat at the outset of this Perspective is that nanomaterials rep-
resent a very broad range of chemistries, compositions and physi-
cochemical properties, which are dynamic and evolving as the 
nanomaterials interact with their surroundings, and it is therefore 
difficult to generalize their applications in agriculture and challeng-
ing to predict any long-term effects.

However, as previous reviews have noted2–4, the development of 
nanotechnology for agricultural applications is still at an early stage, 
although a range of first-generation products such as nanoemulsion 
and nano-encapsulation technologies are on the market (for exam-
ple, Karate Zeon, Seltima and others) alongside commercial for-
mulations of nanoscale silver and copper as biocides (for example, 
Nano Green and Kocide 3000) and nanoporous zeolites that stimu-
late plant growth (for example, Nano-Gro). The nanopesticide mar-
ket was valued at US$410 million in 2019 and is expected to grow at 
a compound annual growth rate of just over 15% during the forecast 
period from 2020 to 2027, reaching US$940 million in 2027 (https://
www.credenceresearch.com/report/nanopesticide-market). 
However, much of this market relates to encapsulation technologies 
for existing active ingredients. A recent review by Hofman et al. pro-
vides a good overview of the status of the field11. Notably, important 
differences may exist between nanotechnology-based pesticides and 
conventional pesticides, including altered bioavailability, sensitivity, 
dosimetry and pharmacokinetics12,13. Challenges and barriers to 
exploiting the full potential of nanomaterials as sensors, soil enhanc-
ers and plant growth stimulators, and to enhancing NUE, include a 
limited understanding of plant–nanomaterial interactions, limited 
methods for efficient delivery of nanomaterials to plants and soil, 
risks of potentially hazardous effects of nanomaterials on human 
health from accumulation of nanomaterials and active ingredient 
residues in edible portions of plants3, and on long-term soil quality 
and soil health from the accumulation of nanomaterials and their 
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degradation products in soil, and the resultant potential alterations 
in microbial biodiversity14. There is an urgent need to address these 
barriers and achieve a true win-win scenario, in which improved 
agricultural production, reduced environmental pollution from 
agriculture and lower costs for farmers can be achieved synergisti-
cally. A one-health approach to nano-agriculture was proposed by 
Lombi et al., which requires interdisciplinarity and the bridging of 
human and environmental health research15. In this Perspective, we 
suggest that computational approaches including artificial intel-
ligence (AI) and machine learning modelling will have a critical 
role in driving the progress of nano-enabled agriculture; indeed, 
such approaches are already starting to gain regulatory acceptance 
for safety assessment of nanomaterials, facilitating safe-by-design 
nanomaterials for a range of consumer products and in medicine.

We also present examples of where the integration of AI and 
nanotechnology in precision agriculture could accelerate develop-
ment and provide the insights needed to overcome the current bar-
riers. Nanoinformatics will have a vital role in probing the design 
parameters of nanomaterials for use in fertilizer and pesticide 
delivery to ensure minimal impacts on soil health coupled with low 
phytotoxicity and minimal nanomaterial residues remaining in the 
edible tissue portions; in exploring and predicting the plant and 
ecosystem responses to nanomaterials across different climate and 
soil conditions and over multiple growing seasons; and in optimiz-
ing the interplay of nanomaterials and plant responses for safe and 
sustainable agriculture. By leveraging advances in cheminformatics 
for de novo design of drugs16 and for multi-objective optimization17 

to simultaneously optimize numerous or competing objectives, and 
advances in nanoinformatics for prediction of cellular attachment, 
uptake, toxicity, biodistribution and safe-by-design optimization 
of nanomaterial properties18–20, it is clear that, despite current limi-
tations in data availability and harmonization, the time is ripe for 
application of AI and machine learning approaches to nano-enabled 
agriculture. For example, AI may predict nanomaterial impacts on 
the agricultural ecosystem and their performance in improving 
agricultural production (NUE and reduction in air and water pol-
lution from key elements) by integrating experimental data from 
across different soil conditions and different plant species or climate 
conditions, and from nanomaterial physicochemical properties to 
develop predictive models to optimize the efficacy of delivery, while 
minimizing pollution and ensuring a high safety profile for the 
nanomaterials in soil and minimal residues in the edible plant parts, 
as part of an overall approach for safer-by-design development of 
nano-agrochemicals.

Current challenges and applications of AI in agriculture
The application of computers and AI in agriculture is not new—for 
example, articles addressing software for integrated resource man-
agement21, image digitization for soil and crop science21, and light 
and temperature monitoring and control for plants22 were published 
35 years ago. The rise of remote sensing and integration of remote 
sensing data in decision-support tools for contemporary farm-
ing systems is expected to improve yield production and manage-
ment while reducing operating costs and environmental impact23. 
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Fig. 1 | Applications of nanotechnology in agriculture, focusing specifically on crop production. Most applications are still at research stage, due to 
uncertainties regarding safety and complex and emerging regulatory processes for approval of agricultural chemicals, including plant-protection products, 
biocides and fertilizing products or plant biostimulants. NMs, nanomaterials.
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Models of agricultural systems have emerged over the past 50 years, 
spanning field, farm, landscape, regional and global spatial scales 
and engaging questions in past, current and future time periods. 
Integrated agricultural systems models combining grasslands and 
cropping models, livestock models, pest and disease models and 
risk-behaviour models are also emerging, although data gaps exist 
across all aspects, hampering their implementation24. A compari-
son of the capabilities of a random-forest machine-learning-based 
model and a physics-based model (a two-dimensional solver of 
Richards equation using HYDRUS 2D) to predict soil matrix 
potential in the root zone of a cranberry field over 72 h found that 
although both models can accurately forecast the soil matrix poten-
tial in the root zone, the machine-learning-based model achieved 
better performance compared with the physics-based model, but 
its forecasting accuracy decreased rapidly toward the end of the  
72 h lead time25.

The main driver for innovation in agritech is the need to opti-
mize productivity to feed the increasing human population with 
the decreasing global per capita agricultural land area while ensur-
ing the conservation of soil health and the protection of environ-
mental quality26. The intensification of agriculture for enhanced 
productivity has resulted in extremely poor NUE globally27,28 (less 
than 50%), which poses a serious threat to environmental qual-
ity as large amounts of nutrients are lost to water and air, causing 
eutrophication and greenhouse effects (nearly 11% of global green-
house gas emissions are from agriculture29). Rockström et al. recom-
mended a reduction of reactive nitrogen (N) use in agriculture from 
150 MtN yr−1 to about 35 MtN yr−1 globally to ensure sustainability30. 
Such a reduction may be achieved through a combination of tar-
geted nano-enabled delivery of fertilizer to match plant demands 
and thus avoid excessive losses, development and availability of 
low-cost in situ nutrient-sensing technology to help farmers plan 
fertilization efficiently, and identification of crop breeds that are 
efficient in nutrient uptake or fixation of atmospheric N2 directly 
or through enhanced symbiosis31. Recent efforts to enhance NUE 
include the use of biofertilization to enhance microbial biodiversity32 
and the application of a range of N management tools across the 
growing season, including soil testing, plant tissue testing, spectral 
response, fertilizer placement and timing, and vegetative indexes 
(leaf area index and normalized difference vegetation index) using 
AI-enabled drones, handheld sensors and satellite imagery33.

Global agricultural yields are also impacted by crop loss due to 
competition from weeds, insect damage and plant diseases. Weed 
competition causes 34% of crop loss on a global scale, and micro-
bial diseases and pest damage cause a further 34% of crop loss34. 
The application of synthetic herbicides and pesticides thus increases 
yields (reducing crop loss) and, in the case of herbicides contain-
ing nitrogen, phosphorus and potassium, improves food quality 
through enhanced nutrient uptake and retention35; however, these 
agrochemicals, which are designed to kill, also cause severe adverse 
impacts on the health of human and non-targeted organisms and 
soil fertility, and result in contamination of water, soil and air36. 
Misuse of agrichemicals on poor-quality soils, soil degradation as 
a result of farming intensification, decreasing water availability and 
water quality, and globalization of diseases have led to low resilience 
of agriculture systems37. Moreover, climate change effects, such as 
increased atmospheric CO2 levels and increasing temperatures, will 
also impact the future of agriculture38.

Nanotechnology applications in the agricultural sector have 
great potential to improve all aspects of crop production—that is, to 
increase crop production yields and resource-use efficiency while 
reducing agriculture-related environmental pollution—thereby 
ensuring global food security while ensuring future agricultural 
sustainability. The convergence of AI approaches and nano-enabled 
agriculture is in its infancy and thus this Perspective aims to stimulate 
the development of this important area. Coupling existing models  

for nutrient cycling and crop productivity with AI and machine 
learning to optimize targeting, uptake, delivery, nutrient capture 
and soil microbial composition will enable design of nanoscale 
agrochemicals that combine optimal safety and functional profiles 
and implementation of nano-agrichemicals into mainstream agri-
cultural systems management. A roadmap to achieve this, and the 
existing components that can be leveraged from nanosafety research 
more broadly, are laid out in the following sections.

Leveraging progress in nanosafety and nanoinformatics for 
nano-agrochemicals
Before maximizing the use of nanomaterials in agriculture and 
agronomy, some concerns need to be addressed, including the 
potential toxicity of the nanomaterials to target and non-target 
organisms and adverse impacts on ecosystems39,40, their persistence 
and mobility in the environment and those of their breakdown 
or transformation products. As with all agrochemicals, concerns 
about potential residues in edible portions of plants also need to 
be addressed as part of an overall risk assessment of nano-enabled 
agrochemicals41. Since the use of nanomaterials on farmland will 
require large quantities of nanomaterials—the synthesis of which 
requires high energy input—evaluating the cost of production and 
the cost–benefit trade-offs should be considered in the development 
of nanomaterials for application in agriculture.

The rapid pace of the development of nanotechnologies, the 
enormous diversity of physicochemical properties of nanomaterials 
and their dynamic interactions with, and transformations by, their 
surroundings (including, for example, biomolecule corona forma-
tion, dissolution and sulfidation42,43) lead to a need for in silico 
approaches to predict and assess their safety19. Nanoinformatics 
emerged a decade ago in the context of development and imple-
mentation of nanotechnology in the real world requiring the har-
nessing of information at the nexus of environmental and human 
safety, risk assessment and management, physiochemical properties 
and function. Through the application of AI and machine learning 
for in silico risk assessment44, nanomaterials grouping and classifi-
cation45, and safe-by-design46 nanomaterials design, as well as for 
prediction of nanomaterials corona formation47 and consequences 
of cellular attachment and uptake48–50, nanoinformatics has had 
a notable role in the area of nanosafety and nanomedicine. Deep 
learning approaches have been applied, for example, to microscopic 
images of the aquatic indicator species Daphnia magna exposed to 
nanomaterials in a range of representative waters of different ionic 
strengths and natural organic matter contents, and can automati-
cally detect possible malformations—such as effects on the length 
of the tail, overall size and uncommon lipid concentrations and 
lipid-deposit shapes, which are due to direct or parental exposure 
to nanomaterials—and can classify the nanomaterials as toxic or 
non-toxic20. An early application of Bayesian networks modelled 
the risk of silver nanomaterials exposure in aquatic environments51, 
which was subsequently used for sensitivity analysis52. A Bayesian 
network combining physicochemical properties and exposure 
potential of nanomaterials was used to perform hazard assess-
ment53. Bayesian networks can also underpin the development and 
quantitative analysis of the causal relationships in adverse-outcome 
pathways (AOPs) and AOP networks54. For example, the causal rela-
tionships between the building blocks of an AOP relating the repro-
ductive failure of Caenorhabditis elegans through oxidative stress 
caused by silver nanomaterials were established using Bayesian net-
works55. This highlights an important difference between Bayesian 
and machine learning approaches, which is that the former requires 
that causal relationships are known or are assumed, whereas the lat-
ter does not require any a priori causal relationships.

A key challenge in the development of nanoinformatics models 
has been the accessibility of datasets, although there are consider-
able efforts underway currently to curate, harmonize and integrate 
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nanosafety data and to enrich them with environmental, gene, pro-
tein, geospatial and other data. Tools and approaches to automate 
data mining have been developed, including workflows that sim-
plify the handling, processing and modelling of cheminformatics 
and nanoinformatics data, including the Enalos toolbox of more 
than 25 processing modules called Enalos+ nodes, which extract 
useful information and analyse experimental and virtual screen-
ing results in a chemoinformatics or nanoinformatics framework 
via KNIME56. Other approaches applied in the nanosafety area 
to overcome the limitations of dataset size include application of 
read-across approaches for gap filling57 and enrichment of datas-
ets through image analysis58,59 or by generation of computational 
descriptors60,61, for example, which are then correlated with toxic-
ity. The increasing availability of nanomaterials models that can 
make predictions without the need for any experimental input, 
using only knowledge of nanomaterial structure and composition 
(that is, physics-based models62) enables developers to screen nano-
materials in silico before actually producing them, thus ensuring 
that the properties of concern are reduced or eliminated, which 
should make the nanomaterials safe by design63,64. For nanomateri-
als and individual molecules, the starting level of the data is quan-
tum chemical, and includes explicit representation of all atoms and 
valence electrons. To set up such simulations, input of the nano-
material chemical composition, including impurities, as well as 
nanomaterial crystal structure is needed. At this level, atomistic and 
quantum-chemical representation can be used to evaluate the elec-
tronic structure of the nanomaterial and to parameterize a coarser 
representation: an atomistic model, by development of appropriate 
force fields and material constants. This procedure can combine 
physics-based multiscale modelling for calculation of advanced 
descriptors and properties of nanomaterials with nanoinformatics 
methods for evaluation of their complex properties and function-
alities63. By scanning the main groups of engineered nanomateri-
als, specific properties can be identified that might be responsible 
for causing a particular toxic effect and lead to a particular adverse 
outcome, which needs to be modified or avoided. This provides a 
means of grouping and read-across characterization of nanoma-
terials and enables development of nanomaterials that are safe by 
design, and is currently an area of very intensive research.

As the available pool of fully validated nanoinformatics mod-
els and tools with well-defined domains of applicability grows, 
the nanosafety field is becoming less reliant on animal testing and 
more targeted towards the safe-by-design principles for early stages 
of nanomaterial development. Integration of models into predic-
tive risk assessment frameworks, such as Integrated Approaches to 
Testing and Assessment (IATA) are the next step, combining nano-
materials exposure and hazard characterization for complete risk 
assessment. IATA use existing information coupled with the genera-
tion of new information in an iterative approach to answer a defined 
question in a specific regulatory context, and can include a com-
bination of methodological approaches (such as quantitative struc-
ture–activity relationships (QSARs), read across in silico, in vitro,  
ex vivo and in vivo) or omics technologies (for example, toxico
genomics). As AI and machine learning models for nanosafety 
emerge, they are increasingly being incorporated into IATA. In these 
IATA, the output from one model can be the input for the next, and 
predictions from several different models can then be integrated 
in a final machine learning modelling and predictive analysis. The 
analysis can then be applied to generate, for example, development 
of nanomaterial fingerprints—predictive and informative physico-
chemical, biological and computational descriptors that describe a 
set functionality—that is, the minimum set of descriptors required 
as input to predict specific nanomaterial functionalities63.

Standard nanoinformatics methods for modelling have thus 
far ignored the multi-objective nature of the problem and have 
focused on optimizing each biological or material property  

individually as they become available during the material design 
process. Multi-objective optimization (MOOP) methods introduce 
an innovative approach for optimization founded on compromises 
and trade-offs among the various objectives17. The aim of MOOP 
methods is to discover a set of satisfactory compromises and 
through them, the global optimal solution, by optimizing numer-
ous dependent properties simultaneously. The primary benefit of 
MOOP methods is that local optima corresponding to one objec-
tive can be avoided by consideration of all the objectives simultane-
ously, thereby escaping single-objective dead ends and leading to 
a more efficient overall process. Several methods have been devel-
oped for the in silico optimization of small molecules that account 
for the multi-objective aspect of the drug-design process, enabling 
scientists to optimize in multiple spaces simultaneously. Although 
MOOP models have not yet been explored properly in the area of 
nanomaterials, a pool of well-validated nanoinformatics models and 
tools, assisted by physics-based models, is available, and efforts to 
integrate these and facilitate multi-factor optimization of safety and 
functionality as the basis of safety by design are now beginning63. 
For example, multi-perspective AI- and machine-learning-based 
modelling techniques can be used to optimally aggregate and inte-
grate experimental information and outcomes of the multi-scale 
modelling methods and eventually increase confidence levels con-
cerning evidence of particular hazards. The resulting commercial 
benefits will include improved market access for agricultural appli-
cations and reduced costs for the exposure, hazard and risk assess-
ment of nanomaterials, including safe-by-design screening before 
production to optimize both functionality and safety.

The examples highlighted above demonstrate that there is 
ample scope to apply nanoinformatics in nano-enabled agricul-
ture, although this has yet to be explored and is thus the rationale 
for the current Perspective to inspire the community to begin to 
apply the wealth of knowledge and existing approaches to the spe-
cific challenges of nanomaterials applied to agriculture. Areas ripe 
for application of nanoinformatics and modelling include predic-
tion of nanomaterial interactions with and impacts on rhizosphere 
secretions (both proteins and metabolites), nanomaterials trans-
formations before and during uptake and translocation, nanoma-
terials impacts on soil microbial communities and for prediction 
of plant uptake following foliar or soil application. Experimental 
data are emerging in all these areas14,65,66, and a dedicated effort to 
integrate and curate these data and present them in a format suit-
able for modelling is currently underway within the nanoinformat-
ics e-infrastructure projects NanoCommons and NanoSolveIT63. 
Coupling these approaches with existing models for nutrient 
cycling67, NUE68 and crop productivity69, and the aforementioned 
agricultural systems models into overall IATA with MOOP capabili-
ties, will begin to enable co-optimization of nanomaterials for use in 
agricultural systems that combine safety and functionality profiles 
(including enhancing NUE and calorific value of crops) enabling 
precision agriculture, as shown schematically in Fig. 2.

Experimental studies using nanomaterials for agriculture in 
the laboratory, mesocosms and field are expensive, time consum-
ing and complicated, limiting the range of conditions that can be 
varied systematically. Conclusions may be ambiguous, because the 
interpretation of the results is influenced by factors such as experi-
mental procedures, protocols, duration, nanomaterials types, doses, 
soil types and plant species. Integration of the existing data—albeit 
with gaps and limitations—and supplementation with predictive 
modelling and machine learning approaches—including Bayesian 
networks53,70, which can be dynamically updated as new knowledge 
emerges—into IATA underpinned by MOOP approaches offer 
exciting new directions. Development of a nano-agriculture IATA 
case study using the Organisation for Economic Co-operation and 
Development IATA case study approach71 seems to be a logical next 
step as shown schematically in Fig. 2.
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AI and machine learning for nano-enabled agronomy
Here we present current and future applications of AI and machine 
learning applications in agriculture.

AI and machine learning approaches. As computational capa-
bilities grow and the value of data as knowledge to be exploited is 
increasingly realized, AI and machine or deep learning approaches 
are emerging as means to identify patterns in large datasets  
that are predictive of future outcomes. One of the most widely 
used approaches involves neural network algorithms, which use an  
unbiased subset of the total available data as the training set to 
develop a model that makes predictions using the rest of the data—
the validity of the predictions is evaluated to ensure that they could 
not arise randomly. The size and range of the dataset used to train 
the model provides the limits of its predictive power, or its domain 
of applicability—models cannot predict reliably outside the range of 
these data. Box 1 describes the various types of data-driven machine 
learning models, which include models that link structure or prop-
erties (for example, of a chemical or nanomaterial) to specific effects 
or impacts on the environment—QSARs or quantitative property–
activity relationship models72, and Bayesian networks, which are a 
powerful tool for incorporating uncertainty into decision-support 
systems73—by providing a basis for probabilistic inference and facil-
itating assessment of changes in probabilistic belief as new evidence 

is entered into the model. The larger the dataset available to train a 
machine learning model, the more powerful it will be—for exam-
ple, in drug discovery or cheminformatics, models typically use 
data from thousands of different chemicals to develop a prediction. 
Similarly, genomics and related approaches, in which hundreds of 
thousands of data points are available, enable generation of strong 
gene-interaction networks and assessment of effects of specific 
genetic perturbations; these are used, for example, to understand 
gene-regulation networks in plants74.

For application of AI and machine learning in nano-enabled 
agriculture, it will be necessary to mine the existing publicly avail-
able datasets, including those on nanomaterials safety and nanoma-
terials impacts on plants and soil microbial communities, existing 
plant omics databases such as the Plant Omics Data Center75, an 
integrated web repository for interspecies gene-expression networks 
incorporating information on eight plant species (Arabidopsis thali-
ana, Oryza sativa, Solanum lycopersicum, Sorghum bicolor, Vitis 
vinifera, Solanum tuberosum, Medicago truncatula and Glycine 
max) with functional annotation of the genes to facilitate biological 
comprehension, the plant proteome database, the Plant Secretome 
and Subcellular Proteome KnowledgeBase (PlantSecKB76) and 
similar databases for soil microbiota, and integrate these with 
relevant agricultural databases such as the global gridded data of 
soil physical properties, hydroclimatic and agricultural variables, 
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Fig. 2 | Applications of machine learning to nano-enabled agriculture. Application of machine learning in risk assessment and safe-by-design 
nanomaterials design and the potential for extension of machine learning approaches to support nano-enabled agriculture, building on advances in both 
nanoinformatics and agricultural systems modelling and emerging developments related to MOOP modelling. Integrating a range of different modelling 
and experimental approaches via an IATA will lead to enhanced prediction power in terms of optimal nanomaterials properties for safety and functionality 
across the range of potential nano-agriculture applications, and faster and safer implementation of precision nano-enabled agriculture.
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socio-economic metrics, and historical pesticide usage data (for 
example, table 1 in Maggi et al.77). The utility of such an approach of 
integrating disparate datasets has recently been demonstrated with 
the establishment of PEST-CHEMGRIDS, a comprehensive data-
base of the 20 most-used pesticide active ingredients on 6 dominant 
crops and 4 aggregated crop classes at 5 arcmin resolution (about 
10 km at the equator) projected from 2015 to 2025. The use of auto-
mated data extraction, curation and integration via the Enalos+ 
KNIME tools, which has already been demonstrated for drug dis-
covery and nanoinformatics56, will facilitate this process, and new 
nodes for specific databases or data clean-up and integration will be 
developed for nano-agriculture datasets as needed.

Current AI and machine learning in agriculture. A 2018 review 
of the use of machine learning in agriculture classified the applica-
tion areas into (1) crop management, including applications in yield 
prediction, disease detection, weed detection crop quality and spe-
cies recognition; (2) livestock management, including applications  

in animal welfare and livestock production; (3) water manage-
ment (daily, weekly or monthly evapotranspiration rates); and (4) 
soil management such as prediction and identification of agricul-
tural soil properties78. However, application of Bayesian networks 
to agricultural systems has remained challenging, as there are often 
insufficient data to compute the prior and conditional probabilities 
required for the network73. Several other machine learning meth-
odologies can be investigated without the need for a priori relation-
ships, and numerous models can be linked together to fill gaps in 
the data and predict missing values, as demonstrated successfully 
for a meta-analysis of 216 published articles on cytotoxicity of metal 
oxide nanomaterials79.

In terms of the key areas identified for improvements in crop 
production, process-based machine learning models (for example, 
the SPACSYS model80) for plant growth—incorporating assimila-
tion, respiration, water and nitrogen uptake, partitioning of pho-
tosynthate and nitrogen, nitrogen fixation for legume plants and 
root growth81—are emerging and being constantly improved. With 

Box 1. The main types of machine learning algorithms and examples of their application in agriculture and/or nanomaterials design 
and safety assessment104

• Supervised learning. This algorithm consists of a target out-
come (dependent variable) to be predicted from a given set of pre-
dictors (independent variables), generating a function that maps 
inputs to desired outputs. The training process continues until the 
model achieves the desired level of accuracy on the training data-
set, and the model is then tested on the test dataset, which was not 
involved in the training procedure.

Examples of supervised learning: regression, decision tree, 
random forest, k-nearest neighbours (KNN) and logistic regression.

Applications in agriculture and agronomy: a KNN algorithm 
was used to predict water retention at −33 and −1,500 kPa matric 
potentials using a hierarchical set of inputs (soil texture, bulk 
density and organic matter content)105.

Applications in nanomaterials design, safety and interactions106: 
KNN algorithms have been applied to develop a predictive QSAR 
model for nanomaterials cellular association based on their 
physicochemical properties and adsorbed protein corona, as a 
means to understand the drivers of nanomaterials toxicity84.

Potential applications in nano-enabled agriculture: these 
algorithms could be applied for prediction of acquired biomolecule 
coronas (rhizosphere secretions, foliar sections and biont) and 
their evolution during nanomaterials uptake into plants, and 
for prediction of nanomaterials transformations and impacts 
on soil or foliar bionts. They could be integrated into IATA with 
water-retention models to predict nanomaterials mobility in soil.

• Unsupervised learning. In this algorithm, there is no target 
or outcome variable to predict. It is used to cluster data into 
different groups.

Examples of unsupervised learning: a priori algorithm and 
k-means clustering.

Applications in agriculture and agronomy: a segmentation 
algorithm—inspired by an image-processing region-merging 
algorithm—for delineation of discrete contiguous management 
zones, that is applicable to high- or low-density irregular datasets 
such as yield data107, has been developed and can identify coherent 
management units to facilitate differential crop management.

Applications in nanomaterials design, safety and interactions: 
k-means clustering has been applied to signal processing of 
single-particle inductively coupled plasma mass spectrometry 
(spICP-MS) raw data (used for characterization of nanomaterials 
size and to distinguish particulate versus ionic fractions for 

quantification of nanomaterials dissolution, uptake and other 
properties) to discriminate particle signals from background 
signals, leading to a sophisticated, statistically based method to 
quantitatively resolve different size groups contained within a 
nanomaterial suspension108.

Potential applications in nano-enabled agriculture: could be 
applied to prediction of nanomaterials transformations under 
different soil and climate conditions for prediction and clustering 
of efficacy of nano-enabled agrichemicals and NUE of fertilizers. 
Integration with crop management approaches could be applied to 
determine optimal nano-agrichemical application strategies.

• Reinforcement learning. The machine is trained to make 
specific decisions. Using trial and error, the machine learns from 
past experience and captures the best possible knowledge to make 
accurate decisions.

Example of reinforcement learning: Markov decision process.
Applications in agriculture and agronomy: a smart agriculture 

Internet-of-Things system based on deep-reinforcement 
learning has been developed to increase food production using 
deep-reinforcement learning in the cloud layer to make immediate 
smart decisions such as determining the amount of water needed 
for irrigation to improve the crop growth environment109.

Applications in nanomaterials design, safety and interactions: 
a recent example used Kohonen networks110 (also known as 
self-organizing maps) to visualize sets of silver and platinum 
nanomaterials on the basis of structural similarity and overlay 
functional properties to reveal hidden patterns and structure–
property relationships. Visual inspection of the self-organizing 
maps revealed a strong structure–property relationship between 
the shape of silver nanomaterials and the energy of their Fermi 
level, and a weaker relationship between shapes with a high 
fraction of surface area and the ionization potential, electron 
affinity and electronic band gap. Both energy levels and crystal 
structure or exposed crystal face are linked to nanomaterials 
reactivity and toxicity111.

Potential applications in nano-enabled agriculture: initial 
applications in hydroponics as part of real-time responsiveness to 
changes in nutrient and microbial compositions; integration with 
nanomaterials structure–property relationships under different 
environmental and local conditions to optimize release rates  
and NUE.
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increased understanding of the processes and, more importantly, 
the variables driving them, and the availability of intervention 
strategies such as precision nano-agrochemicals to target specific 
locations or release in response to specific stimuli, the potential of 
machine learning for optimization of agroecosystems has never 
been greater. Integrating machine learning, simulation and port-
folio optimization can inform decisions and support selection of 
optimal seed varieties (for example, soybean) to grow, with resolu-
tion at the level of a specific farm with its individual crop rotation 
history rather than at regional scale based on soil type and qual-
ity82. Incorporating such information into multi-object optimiza-
tion modelling of nanomaterial safety, soil management and plant 
yield offers exciting new possibilities. Indeed, a recent review of the 
potential impacts of AI on achieving the United Nations Sustainable 
Development Goals (SDGs) suggested that AI will be an enabler for 
SDG2 (“improved nutrition and promote sustainable agriculture”), 
but highlights generally that the pace of development of AI may have 
implications in terms of a lack of regulatory oversight and insight, 
which could potentially result in gaps in transparency, safety and 
ethical standards83.

Nanoinformatics models applicable to nano-enabled agriculture. 
The application of machine learning in nanomaterial risk assess-
ment and for design of safe and environmentally friendly nanoma-
terials has also been an area of intensive research over the past few 
years. For example, nanoQSAR models linking specific nanomateri-
als properties to uptake by, and impacts on, cells or organisms are 
emerging. Models that allow determination of surface functional-
izations that enhance (or decrease), for example, protein binding 
and/or cellular association (as a pre-requisite for internalization84) 
are also emerging, and can be applied for design of targeting strate-
gies in precision nano-agriculture. Although to date no nanoQSARs 
have been developed for plants, ecotoxicities of plant-protection 
chemicals to target and non-target species have been predicted 
using QSAR85, and as the corpus of data related to nanomaterials in 
plants and soil species is growing exponentially, it is only a matter 
of time before the first nanoQSARs for plants and soil microbiota 
are developed. Similarly, extending advances in nanomedicine to 
precision nano-agriculture will facilitate the design of optimized 
controlled-release agrochemicals86,87. For example, deep learning 
using an automatic data-splitting algorithm and evaluation criteria 
suitable for pharmaceutical formulation data has been developed 
for the prediction of optimal pharmaceutical formulations and 
doses88. From an agricultural perspective, understanding the fac-
tors (including nanomaterial, plant, soil and climate factors) that 
control the release rate of active ingredients, and the factors driv-
ing transport of the carrier can influence selection of formulation 
parameters and suitability of application to specific locations or 
climates. Such data-driven models require substantial amounts of 
data to train and validate them, which remains a barrier to their 
development. However, significant work is underway in the wider 
nanosafety arena to develop optimized workflows for generation 
of data and metadata (for example, using electronic laboratory 
notebooks89 to capture experimental data as it is generated, linking 
them to underlying protocols and calibrations, and facilitating cura-
tion and storage of the data in databases, thereby accelerating their 
accessibility and re-usability), annotation with relevant ontological 
terms mapped to the data schema of the receiving databases and 
automated upload to nanosafety knowledge bases90, which in the 
medium term will facilitate the aggregation, integration and reuse 
of nanosafety- and nano-agriculture-related datasets.

However, as noted above, there are important concerns regard-
ing the safety and risks of nanomaterials that must be addressed 
before their widespread intentional application to the environ-
ment can be sanctioned, and there are tight regulatory processes for 
approval of agrochemicals91. A recent review assessed the regulation  

of pesticides and the potential use of computer-based chemical 
modelling technologies to facilitate risk assessment of nano-enabled 
pesticides88, and concluded that quantum chemistry is an appropri-
ate tool for characterization of the structure and relative stabilities 
of organic compounds and for studying degradation pathways. 
However, a re-evaluation is needed to determine its suitability for 
nano-enabled agriculture, using quantum nanomaterials descrip-
tors for QSAR development. Among the quantum descriptors for 
nanomaterials are molecular and electronic properties such as 
band gap, ionization potential, atomic charge, electronegativity and 
adsorption energy, as well as interaction parameters for predic-
tion of interactions of proteins and small molecules, such as bind-
ing energies, binding affinities, Hamaker constants and absorption 
energies, which can be used to predict biomolecule corona forma-
tion92. In due course as data emerges, the evolution of the adsorbed 
biomolecule as nanomaterials interact with, and respond to, soil and 
plant secretomes, and are transformed as shown in Fig. 3, will also 
be predictable through modelling, allowing tailoring of nanomteri-
als to acquire the desired biomolecule corona.

Challenges and barriers to precision nano-agriculture
Although nanotechnology has potential in a wide range of applica-
tions in agriculture, there are many challenges to be overcome to 
move this area forward and facilitate full commercial-scale applica-
tion of many of the innovative nanomaterials presented in Fig. 1.  
These include a lack of mechanistic understanding of the interac-
tions at the nanomaterial–plant–soil interface and nanomaterial 
uptake and translocation in plant vascular structure and organelles; 
insufficient understanding of the environmental safety and human 
health risks of intentional nanomaterial application; a lack of soil 
and large-scale field studies to demonstrate the efficacy of nano-
materials under realistic scenarios; balancing the adoption of new 
technology and the low profit margins in agriculture; and the chal-
lenges in collection and harmonization of the datasets needed for 
development of AI models.

Long-term studies at ecosystem level under environmentally rel-
evant conditions and at realistic nanomaterials exposure concentra-
tions are currently lacking. For example, silver, zinc and copper-based 
nanomaterials have demonstrated potential to be applied as effi-
cient pesticides or fungicides; however, the potential impact on 
non-target organisms (for example, beneficial plant rhizosphere 
bacteria and worms) and long-term impacts on soil quality are not 
known. While there remain challenges for the detection of nanoma-
terials in complex matrices, particularly at low concentrations, and 
access to state-of-the art facilities with sufficient resolution such as 
synchrotrons is limited, application of deep learning tools to plant 
spectral images (for example STXM. XRF etc.) is expected to enable 
advances in terms of determining and predicting nanomaterials 
localization and in situ transformations even with relatively limited 
datasets and against a background of naturally occurring particles. 
Indeed, as models are trained using existing high-resolution datasets 
for specific nanomaterial–plant combinations, they can be coupled 
with more generalized QSARs or physical models of nanomateri-
als transformations under specific environmental conditions, and 
supplemented with the development of functional assays that can 
provide the input data needed for models but under simplified con-
ditions93,94. For example, surface affinity and dissolution rate have 
been identified as two critical functional assays for characterizing 
nanomaterial behaviour in soil systems. A range of functional assays 
for nanomaterials transformations, including binding of secreted 
proteins and small molecules or uptake using simpler hydroponic 
systems could be envisaged to begin parameterizing more complex 
predictive machine learning models.

Although nanofertilizers may enhance the NUE, effects of nano-
materials on the nutritional quality of food (for example, alteration 
of the content of carbohydrates and macro- or micronutrients) have 
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been reported95 and need to be assessed systematically, and predic-
tive models need to be established. Nanomaterials may accumulate 
in seeds and their potential to cause transgenerational effects96,97 
are largely unknown. The presence of nanomaterials may cause 
enhanced uptake of contaminants by plants—for example, through 
binding to the nanomaterial surface and co-transport—and may 
amplify their adverse effects98,99. Such effects need to be fully under-
stood and the use of nanoQSAR, multi-object optimization and 
other machine learning approaches will support this understanding 
and prediction.

Nanomaterials undergo numerous transformations (physi-
cal, chemical or biological) in soils and plants. For example, many 
nanomaterials based on metals and metal compounds such as zinc, 
copper and silver tend to dissolve and release metal ions, which can 
further react with soil and plant components such as phosphate, 
sulfur and chloride. These transformations may alter the original 
nanomaterial properties that were designed for the specific applica-
tion. For example, antifungal nanomaterials such as those based on 
silver can be oxidized, dissolved and sulfidized in soil environments, 
either by interaction with the soil microbiome or within plants, and 
the antifungal property of the silver nanomaterials could be reduced 
or diminished100. Some transformations might release toxic compo-
nents—for example, graphene oxide was reported to degrade under 
sunlight and release polycyclic aromatic hydrocarbon-like com-
pounds that are likely to exhibit toxic properties and persist in the 
environment101. Development of QSAR or machine learning models 
that can predict the transformations of nanomaterials under a wide 
range of soil and temperature conditions will facilitate optimiza-
tion of nanomaterials properties for specific locations. Substantial 
progress towards modelling of nanomaterials transformations in 
the environment has already been made, including environment 
fate models and process-based models. Combining current models 
with experiments will enhance next-generation nanomaterial fate 
and transport models in key areas, including descriptions of nano-
material heteroaggregation, descriptions of reactive nanomaterial 

chemistry, increased temporal and spatial resolution and sensitiv-
ity analyses to allow simplification of model structure102. Efforts to 
develop functional assays to generate the data needed to param-
etrize these models are also underway43,93,94, and can be extended 
to include functional assays for rhizosphere secretions in response 
to nanomaterials—for example, using hydroponics systems or  
standardized soils.

Computational tools that can predict nanomaterial transforma-
tion processes will enable manipulation or direct simulation of the 
transformation to maintain the nanomaterial function or modify 
its effects. However, the complexity of soil chemistry and the high 
responsiveness of plants and their secretions into the rhizosphere 
increase the variability and diversity of potential nanomaterial trans-
formations (Fig. 3). Many such factors are interlinked; for example, 
nanomaterial transformations are affected by the soil and plant 
microbiome and the extracellular polymeric substances and plant 
root exudates around the rhizosphere. However, plant root exudate 
and the microbiome can affect each other and both may be altered 
by exposure to nanomaterials, which in turn can affect the nano-
material transformation processes. Changes to the microbiome will 
affect the nitrogen-cycling processes in soil. Foliar applied nano-
materials can be translocated downwards to the roots and inter-
act with phyllosphere components such as microorganisms and 
leaf exudates. All of the above areas are also subject to change and 
disruption as a result of climate change—for example, changes in 
CO2 concentration and temperature can shift nutrient cycling, alter 
rates of reactions and transformations and change plant susceptibil-
ity to nanomaterials, among other effects. Therefore, the dynamic 
nature of the whole system needs to be considered, making this a 
perfect candidate for AI and machine learning solutions, by inte-
grating existing predictive models for nanomaterials corona forma-
tion (for example, those based on binding affinities and Hamaker 
constants92) or machine learning models using biophysicochemi-
cal characteristics of proteins, nanomaterials and solution condi-
tions via random-forest classification47, with databases of plant and 
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Fig. 3 | The complexity of nanomaterial behaviour in the soil–plant environment and the potential impacts in soil–plant systems. Understanding and 
predicting nanomaterial translocation and transformation, and identifying the optimal nanomaterial forms to retain bioavailable N species in the soil, 
will facilitate design of sustainably functional nanomaterials for agriculture, enhancing NUE while simultaneously reducing pollution and the need for 
fertilizers. Coupling this knowledge with enhanced targeting and sustained, controlled release of pesticides can be facilitated using AI to design optimal 
nano-agrichemicals. Among the input data for machine learning (ML) models are the nanomaterials characteristics and those of the plants and soils 
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parameters can be mined from existing databases. NOM, natural organic matter; S, sulfur-containing functional groups; RCOO, carboxylate ion.
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microbe secretomics and plant proteomes to develop corona evolu-
tion and exchange models.

Compared with prediction of small-molecule toxicity, nanoinfor-
maticians tend to work with smaller datasets (sometimes including 
only a few nanomaterial variants), and typically use exposure con-
centrations and time points as a means to expand the dataset. Thus, 
evaluation of the impact of nanomaterials on NUE in a hydroponic 
system, for example, could assess a panel of 8–10 nanomaterials and 
gauge their effects alone and in combination with fertilizer at differ-
ent ratios and over different timescales, and determine the nitrogen 
concentrations in the water and plant mass and gaseous emissions 
under controlled temperatures and CO2 levels. This would provide a 
multi-factorial dataset for establishment of machine learning mod-
els to predict the NUE of a new nanomaterial, as long as its physi-
cochemical characteristics fell within the domain of applicability of 
the model; that is, if at least one of the nanomaterials in the training 
and test set overlapped with the properties of the new nanomate-
rial. If the nanomaterials were characterized over time under dif-
ferent conditions—for example, in terms of their size, dissolution 
and acquired corona composition—further models could be built 
predicting corona composition and nanomaterials fate and behav-
iour, identifying the key nanomaterials properties and environmen-
tal factors driving the specific effect. If data on plant growth (roots 
and shoots) or localization of the nanomaterials in the plants were 
determined, increasingly complete models of NUE could be devel-
oped, taking into account the nanomaterial localization and specia-
tion within the plant. System complexity can then be increased by 
moving to soils, where nanomaterial characterization is more chal-
lenging, but where models for the environmental fate of the nano-
materials—such as the NanoFASE soil–water–organism model, 
which predicts the fate of nanomaterials in the environment43—may 
already exist. Thus, the initial steps will be small, but as the datasets 

and models emerge, their integration with other models and tools 
into overall IATA and agricultural systems models will become fea-
sible and achievable.

A roadmap for progress
Smart and nano-enabled agriculture combined with AI and machine 
learning capabilities offer an exciting convergence of technologies 
with the unique capability to address the overarching SDG2. The 
impetus for smart agriculture is therefore multi-pronged: from 
enhancing and sustaining productivity through nano-enabled 
(responsive) delivery of agrochemicals to crops, to reduction in 
environmental pollution and negative human health impacts from 
agriculture. The grand challenges in agriculture can only be solved 
if the power of nanomaterials can be harnessed safely, responsibly 
and sustainably. Nanoinformatics will have a vital role in probing 
the design parameters, the plant and ecosystem responses, and their 
co-optimization for safe and sustainable agriculture. For example, 
AI may predict nanomaterial impacts on the agricultural ecosystem 
and their performance in improving agricultural production (NUE 
and reduction in air and water pollution forms of key elements), by 
integrating experimental data from across different soil conditions, 
plant species, climate conditions and nanomaterial physicochemi-
cal properties to predict both the nanomaterials impacts on the 
agricultural system (on plants and soil) and the impacts of the agri-
cultural system on the nanomaterials in terms of their transforma-
tions, transport and bioavailability. This will enable safer-by-design 
development of nano-agrichemicals and co-optimization of both 
safety and desired functionality of the nanomaterials. For example, 
the potential impact of nanomaterials for remobilization of pesti-
cide residue contaminants of soil resulting from decades of pesticide 
use remains an unexplored area, and indeed monitoring of pesti-
cide residues in soil is not currently required at the European Union 

Box 2 | Future research needs

• Determine the long-term fate of nanomaterials, including 
transformation, transport in soil, and uptake and translocation 
in plants, curate these data and the accompanying metadata into 
nanomaterials knowledge bases and enrich them with global 
soil and weather characteristics, knowledge of plant biology (in-
cluding proteome, secretome and transcriptomics data), global 
pesticide use datasets, soil microbial community characteristics 
and any other relevant datasets to facilitate development of deep 
learning models tailored to specific nanomaterials being devel-
oped for nano-agriculture and the local environmental condi-
tions, crop rotations and historical and future needs.

• Assess the long-term life cycle impacts of nanomaterials 
in agricultural ecosystems, including the trophic transfer 
of nanomaterials along food chains and the potential for 
transgenerational impacts. Integration of these datasets into the 
aforementioned knowledge bases will enable further iteration of 
the AI and machine learning models, including development of 
IATA and integrated agricultural systems models.

• Take a systems-levels approach (as illustrated in Fig. 3), since 
the whole ecosystem is interlinked with numerous co-variances, 
and feed this enhanced understanding into emerging regulatory 
frameworks. For example, regulatory frameworks for biocides in 
the EU do not account for impacts on soil quality or accumulation 
of residues in soil, which could potentially be re-mobilized by 
application of nanomaterials, leading to unintended consequences. 
A more holistic and whole-systems regulatory approach, built on 
whole-systems modelling approaches that can integrate a range of 
scenarios such as past use of pesticides into a MOOP modelling 
strategy including nanomaterials properties and predicted 
behaviours, would help to pre-empt future problems.

• Apply AI and machine learning to identify key nanospecific 
properties that initiate the adverse effects or beneficial function 
of nanomaterials from the large dataset thus obtained, 
thereby facilitating design of optimized (safe-by-design) 
nano-agrochemicals that are fully compliant with emerging 
regulations and achieve the desired functionality, which 
may include improved production rates and/or crop yields, 
improved soil health and resilience, improved NUE and reduced 
pollution from agriculture, or application of nanomaterials 
as sensors to tailor delivery or other interventions (Fig. 1). 
This will require development and implementation of MOOP 
modelling approaches—which have recently been applied 
to drug-discovery computational pipelines—to find optimal 
nanomaterials compositions to achieve these goals under 
different (and evolving) combinations of soil, climate and  
crop conditions.

• Integrate models addressing different aspects of the overall 
challenge (physics-based, process-based and data-driven) through 
alignment of input and output parameters and development of 
an IATA, as shown schematically in Fig. 2. Tailoring of the input 
parameters, the modelling approaches and models used with 
the MOOP strategy to address each of the four main application 
areas of nanotechnology in agriculture, and iterative development 
including incorporation of consensus modelling approaches as 
new machine learning algorithms and approaches emerge will 
facilitate progress and support development of commercial and 
open-source tools for use in regulation, and by nano-agrichemical 
developers, suppliers and farmers operating at different scales. 
To this end, in will be essential to provide user-friendly and 
non-expert graphical user interfaces for such models and IATA.
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(EU) level despite the known degradation of soil quality, in con-
trast to the water monitoring regulated by the EU Water Framework 
Directive103. Future research directions to address these challenges 
are outlined here and summarized in Box 2.

Understand the long-term fate of nanomaterials in agricultural 
environments. Transformation of nanomaterials will change their 
original designed properties, which may affect their function as 
fertilizers, pesticides, carriers or sensors. The transformation could 
occur in soil, at the plant interface (for example, root or leaf surface) 
or inside the plant. In soil, the transformation could be driven by soil 
texture and chemistry, and by interactions with soil microorganisms 
and animals. Plant interfaces, including the rhizosphere and phyllo-
sphere, are critical locations for nanomaterials transformation. The 
transformations in these regions are driven by the dynamic and com-
plex composition, including plant metabolites and microorganisms. 
Nanomaterials may also be transformed during their translocation 
in plant vascular structure by interacting with plant fluids. All of 
these areas remain largely unknown and thus generation of datasets 
that are deposited in open access databases is urgently required.

Another critical question is how to effectively deliver nanoma-
terials to target different locations in plants. This requires a clear 
understanding of the uptake and translocation of the nanomateri-
als. Both the leaf and root contain physiological barriers to prevent 
the entry of unwanted substances, and the structures of these two 
organs are very different. Nanomaterials that enter the leaf translo-
cate downward in phloem, whereas those entering roots translocate 
upward in the xylem. The fluid composition and flow rate in xylem 
and phloem may greatly affect the translocation and accumulation 
of nanomaterials in plant. Data and predictive models for these 
questions are all required urgently.

Assess the long-term life cycle impact of nanomaterials in the 
agricultural ecosystem. Given the fact that repeated applica-
tion of nanotechnology in agriculture will become possible in the 

future, long-term retention of nanomaterials in agricultural soil is 
inevitable. The majority of current studies regarding plant–nano-
materials interactions are phenomenological observations of 
nanomaterials toxicity under short-term, high-dose conditions. 
Long-term, low-dose effects of nanomaterials on agroecosystems 
therefore also need to be studied, addressing nanomaterial impacts 
on plant growth, microbial activity and community structure, soil 
health (for example, soil enzyme activity and nutrient cycling), tro-
phic transfer of nanomaterials and transgenerational effects. Use of 
multiple doses, multiple sampling time points and a wide panel of 
nanomaterials, a range of different soil conditions or different plants 
under identical exposure conditions will facilitate implementation 
of data-hungry machine learning models, although meta-analysis 
and computational gap filling of smaller datasets is also helping to 
accelerate the pace of development of nanomaterials models.

Take a systems-level approach to nano-enabled agriculture. The 
behaviour, fate and impact of nanomaterials in the soil–plant sys-
tem, plants and microorganisms are all interconnected. As shown 
in Fig. 3 and described above, change of one factor may induce a 
change of the whole system. Given the power of AI and the com-
plexity of the optimization challenges facing nano-agriculture, it is 
clear that their convergence offers exciting new directions (Fig. 4). 
Using extensive existing models and datasets for soil quality, crop 
yield and NUE, for example, and combining these with models 
and datasets related to plant and microbial secretomes, nanoma-
terials physicochemical properties, transformations and bioavail-
ability, and release of active ingredients, could enable important 
new insights into: (1) the probable transformation pathways for 
the nanomaterials and their resulting environmental transport and 
bioavailability; (2) the potential impact of the nanomaterial and 
its associated active ingredients (in cases where the nanomaterial 
is a carrier) on crop yield and NUE; and (3) potential identifica-
tion of biomarkers of crop health and disease that can be used as 
early warning systems. Identification of data gaps can also drive 
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the design of focused experiments to fill the gaps or to develop 
sub-models for gap filling or prediction of specific parameters, to 
be integrated into an overall model framework enabling design of 
combinations of nanomaterials and active ingredients that opti-
mize NUE and minimize pollution while enhancing crop yield 
and potentially even nutritional (calorific) value. Integration of 
safe-by-design approaches and feeding forward the emerging 
knowledge into the updating of regulatory processes for advanced 
nano-enabled agricultural applications, both in fertilization and in 
plant protection, are also essential.

Systems-wide approaches can also support pre-emptive iden-
tification of potential challenges or solutions arising from use of 
nanomaterials. For example, integrating knowledge on the historical 
use of pesticides and the accumulation of pesticide residues in soils 
globally could potentially identify specific nanomaterials with high 
affinities for such residues, leading to their remobilization and unin-
tended uptake into plants. Thus, the convergence of nanotechnology 
and AI or machine learning will also support efforts under the EU 
Green Deal, and could be used to identify hot spots and/or opti-
mized nanomaterial compositions for soil remediation, for example, 
as well as supporting impact assessment and helping in efforts to 
protect soil fertility, reduce soil erosion and the overuse of nutrients, 
while increasing soil organic matter levels as part of an overall adop-
tion of sustainable soil management practices, including as part of 
the forthcoming revision to the Common Agricultural Policy, which 
a recent report has suggested is only marginally consistent with the 
ambitions of the EU Green Deal11. Extensive changes to EU legisla-
tion are expected in 2021, including the EU Soil Thematic Strategy 
and the Zero Pollution Action Plan for Air, Water and Soil, which 
will encompass a range of chemicals including pesticides.

Use AI and machine learning to identify key nanospecific prop-
erties that initiate the effects or functions of nanomaterials. 
There are multiple physicochemical properties of nanomaterials 
such as size, shape, surface charge, surface area, surface reactivity 
and crystal structure that can influence their transformations and 
toxicities. AI and machine learning will enable selection of the 
most critical parameters that determine and predict the behav-
iour of nanomaterials in soil and plant systems from large datasets 
(Fig. 4). The use of automated data retrieval from public databases, 
data pre-processing and gap filling, and automated splitting of the 
data into test and validation sets for modelling56 will facilitate the 
in silico design of NMs that can be delivered to plants efficiently. 
Nanomaterial transformations in different soil conditions and dif-
ferent rhizosphere compositions under changing climate conditions 
could also be predicted by integrating predictive models, enabling 
optimization of nanomaterials for agricultural application in a range 
of climatic and local conditions. Wider ecosystem effects and pre-
diction of tripartite (nanomaterials–soil–plant) behaviours under 
future climate scenarios can also be predicted using, for example, 
Bayesian networks and deep learning approaches. Such models are 
especially important as they can operate under data scarcity, yet can 
easily incorporate new data as they emerge. Application of these 
emerging models to address the broader issues of food security, and 
to tackle SDG2—improved nutrition and promotion of sustainable 
agriculture—will provide important new intersectional insights and 
suggestions for ways forward.
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